We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Urine Test Accurately Detects Bladder Cancer Recurrence

By LabMedica International staff writers
Posted on 10 Aug 2018
Print article
Image: The Bladder EpiCheck diagnostic kit (Photo courtesy of Nucleix).
Image: The Bladder EpiCheck diagnostic kit (Photo courtesy of Nucleix).
Urinary tests have been studied for the detection of bladder tumors; however, most of these tests have not been implemented in clinical practice because of cost issues, practical aspects, or insufficient sensitivity or specificity as compared to the gold standard.

Bladder cancer, which ranks fifth among the most frequently diagnosed cancers in the EU, has a high disease recurrence rate, some 70%, requiring frequent follow-ups. The standard follow-up procedure includes a cystoscopy, and this procedure is coupled with a urine analysis to inspect for cancerous cells and, if needed, a biopsy of the suspect area.

Scientists at the Radboud University Nijmegen Medical Center (Nijmegen, The Netherlands) and their European colleagues performed a single-arm, prospective, double-blind clinical study was in five leading urology centers in Europe on 440 patients who were recruited in their first year of follow-up. Results for cystoscopy and cytology were noted, and if a lesion was detected, the date and result of histological confirmation were recorded.

The team collected a urine sample for the Bladder EpiCheck test (Nucleix, Rehovot, Israel) – a urine test developed to monitor recurrence of bladder cancer according to 15 DNA methylation biomarkers. The test was performed on ≥10 ml of urine and processed within five days in a central laboratory. Processing includes centrifugation to separate the cell pellet, from which DNA is extracted. The extracted DNA is digested using a methylation-sensitive restriction enzyme that cleaves DNA at recognition sequences if it is unmethylated, while leaving methylated sequences intact. Digested DNA is then amplified via real-time polymerase chain reaction with locus-specific primers and probes (eight wells per sample), and the resulting data are analyzed using the Bladder EpiCheck software.

Out of 440 patients recruited, 353 were eligible for the performance analysis. Overall sensitivity, specificity, negative predictive value (NPV), and positive predictive value were 68.2%, 88.0%, 95.1%, and 44.8%, respectively. Excluding low-grade (LG) Ta recurrences, the sensitivity was 91.7% and NPV was 99.3%. The area under receiver operating characteristic (ROC) curves with and without LG Ta lesions was 0.82 and 0.94, respectively. For the 403 patients with a Bladder EpiCheck result, 320 samples (81.1%) were negative and 83 (18.9%) were positive; the mean EpiScore was 31.2 ± 26.6.

Opher Shapira, PhD, the CEO of Nucleix Ltd, said, “With bladder cancer the problem is not early detection since it usually has signs like blood in the urine. The main problem is monitoring for recurrence of the cancer, because it is a highly recurrent disease. The standard procedures for monitoring causes repeated discomfort in patients and are very costly to the health system. The results of the test mean that physicians who prescribe our urine test for patients and get a no-cancer result back from the laboratory can be assured their patients do not have high grade tumors.” The study was published on July 15, 2018, in the journal European Urology Oncology.

Related Links:
Radboud University Nijmegen Medical Center
Nucleix
Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Biological Indicator Vials
BI-O.K.

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.