We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




MALDI-TOF MS Employed for Early Diagnosis of Bloodstream Infections

By LabMedica International staff writers
Posted on 17 Dec 2020
Bloodstream infections (BSIs) are a major cause of mortality in hospitalized patients. Rapid diagnosis is crucial because any delay in the antimicrobial treatment is associated with an increase in adverse patient outcomes.

The routine identification of microorganisms in clinical microbiology laboratories is carried out by applying different tests, such as phenotypic essays based on microscopic, macroscopic, and biochemical analyses that allow determining their metabolic requirements, either manually or by automated systems.

A team of Medical Microbiologists at the Pontificia Universidad Javeriana (Bogotá, Colombia) analyzed 470 positive blood cultures from 190 patients’ samples using Standard Aerobic/F and Anaerobic/F blood culture media. Isolates were identified using conventional identification methods and by the direct method using the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF MS) system.

All blood cultures were incubated in the BacT/ALERT blood culture system (bioMérieux, Marcy-L’Etoile, France). All isolates were identified using both conventional methods MicroScan WalkAway 96 Plus (Beckman Coulter, Brea, CA, USA), and MALDI-TOF MS.

The protein mass spectra were analyzed using the Flex Control software and the MALDI Biotyper version 3.1 7311 reference spectra (main spectra) (Bruker Daltonics, Bremen, Germany).

The team reported that in 470 blood cultures, the direct method showed good identification results (420/470, 89%); specifically, accurate species and genus identification in 283/470 (60%), and only correct genus identification in 137/470 (29%). The direct protocol had better performance for Gram-negative compared to Gram-positive bacteria (97% versus 76%) and was unable to identify the positive blood cultures for both yeasts and some bacteria, mostly Gram-positive (50/470).

The direct method was unable to identify the positive blood cultures for yeasts and for some bacteria such as Staphylococcus aureus 15/52, coagulase negative staphylococci 11/33, Salmonella spp. 3/3, Streptococcus salivarus 2/2, Actinomyces naeslundii 1/1, and Cutibacterium acnes 1/1. However, all strains of Staphylococcus aureus or coagulase negative staphylococci were identified through the conventional method.

The authors concluded that accurate identification of the pathogen species that cause an infection is paramount. Their study provided a rapid and easy method for the direct identification of pathogens from positive blood cultures. The in-house protocol used gave good and reliable results for Gram-negative bacteria and may be helpful for the identification of some Gram-positive bacteria. This allowed better use of the robust MALDI-TOF technology with results available up to 24 hours earlier, which could positively impact the treatment of patients. The study was published on December 1, 2020 in the International Journal of Infectious Diseases.

Related Links:
Pontificia Universidad Javeriana
bioMérieux
Beckman Coulter
Bruker Daltonics



Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Biological Indicator Vials
BI-O.K.
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.