We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Lipidomics Approach Developed to Predict Cardiovascular Disease, Diabetes

By LabMedica International staff writers
Posted on 18 Apr 2022

Current detection of cardiovascular disease and diabetes relies heavily on factors such as patient history, sex, age, body mass index, as well as blood panels measuring blood glucose and lipid metabolites, such as high- and low-density cholesterol and triglycerides.

Large population-based genotyping efforts undertaken during recent years have demonstrated that many phenotypes, including predisposition to human diseases, are polygenic, i.e., result from a large number of genetic loci, each having a small effect. In typical genome-wide association studies (GWAS), these effect sizes are estimated separately for each variant position because a joint estimation is computationally intractable.

Clinical scientists at the Lund University (Malmö, Sweden) collaborating with those at Lipotype GmbH (Dresden, Germany) assessed type 2 diabetes (T2D) and cardiovascular disease (CVD) risk for 4,067 participants in a large prospective study, the Malmö Diet and Cancer-Cardiovascular Cohort. Investigators collected information on patient lifestyle as well as blood plasma samples from healthy, middle-aged Swedish residents, who were first assessed from 1991 to 1994 and then clinically tracked until 2015.

Measurements (mmol/L) of fasting total cholesterol, HDL cholesterol, HbA1c, triglycerides, and glucose were obtained following standard procedure. Samples for lipid extraction for mass spectrometry lipidomics were analyzed by direct infusion in a QExactive mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a TriVersa NanoMate ion source (Advion Biosciences, Ithaca, NY, USA). Genotyping of participants was performed using the Illumina GSA v1 genotyping array (Illumina, San Diego, CA, USA).

The investigators found that patients at the highest risk for each disease had a 37% probability of acquiring type 2 diabetes and 40.5% chance of acquiring cardiovascular disease. The study participants in the high-risk group showed significantly altered lipidome compositions affecting 167 lipid species for type 2 diabetes and 157 lipid species for cardiovascular disease. Risk stratification was further improved by adding standard clinical variables to the model, resulting in a case rate of 51.0% and 53.3% in the highest risk group for T2D and CVD, respectively.

Chris Lauber, PhD, a professor and corresponding author for the study, said, “In principle, this study can be used to calculate the individual risk for T2D or CVD from the lipidome of a person. It is a first step in the direction of personalized medical practices, and now we want to move from research towards an assay that can be used in medical practice.”

The authors concluded that their results demonstrated that a subset of individuals at high risk for developing T2D or CVD can be identified years before disease incidence. The lipidomic risk, that is derived from only one single mass spectrometric measurement that is cheap and fast, is informative and could extend traditional risk assessment based on clinical assays. The study was originally published on March 3, 2022 in the journal PLOS Biology.


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.