We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Improved Microneedle Technology Speeds Up Extraction of Sample Interstitial Fluid for Disease Diagnosis

By LabMedica International staff writers
Posted on 19 Mar 2024

Interstitial fluid has many similarities with blood, and its secrets are still being uncovered. A microneedle offers a minimally invasive method to sample this fluid directly under the skin. This tool allows for real-time and continuous monitoring of biomarkers circulating in the body. Despite their small size, just two to three times the width of a human hair and around a millimeter in length, microneedles can make a significant difference in early infection diagnosis and personal health monitoring. Now, researchers have developed improved microneedle technology that enhances the extraction of interstitial fluid by collecting more sample quantities in less time.

Sandia National Laboratories (Albuquerque, NM, USA) is leading the way in microneedle research through collaboration with different partners to enhance this technology. Sandia has achieved a breakthrough in interstitial extraction, moving from using multiple needle arrays to a single microneedle technique that collects enough fluid for analysis in just about 10 minutes. This method is not only quicker but also gathers larger fluid volumes. The microneedles, designed to bypass nerve endings by not penetrating too deeply, are hollow and have been optimized by modifying the needle holders' shape, which are 3D printed at Sandia’s Advanced Materials Laboratory.

This advancement could broaden microneedle applications significantly. For example, Sandia is exploring using microneedles to differentiate between bacterial and viral infections. This distinction could enable faster, more precise treatments. Additionally, Sandia is investigating the biomarkers present in interstitial fluid to see how they correlate with blood measurements. This research involves collecting interstitial fluid from volunteers using the new method, with the aim of developing devices for continuous health monitoring. Moreover, Sandia is also working on another project to develop microneedle sensors that detect electrolytes like sodium, potassium, and calcium. Continuous monitoring of these electrolytes could assist in managing cardiovascular functions, hydration levels, and electrolyte imbalances, offering benefits similar to a wearable glucose meter for various health conditions.

“When we started work in this field in 2011, our goal was to develop microneedles as a wearable sensor, as an alternate to blood samples,” said Ronen Polsky, who has led Sandia’s work in microneedles. “People wear continuous glucose monitors for blood sugar measurements. We want to expand this to a whole range of other conditions to take advantage of this minimally invasive sampling using microneedles.”

Related Links:
Sandia National Laboratories

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.