We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test for Fungal Infections Could End Invasive Tissue Biopsies

By LabMedica International staff writers
Posted on 06 Feb 2025

For individuals with weakened immune systems, common molds found in the environment—such as in the soil, on damp walls, or on forgotten fruits—can lead to severe infections deep within the body. In patients undergoing chemotherapy or organ transplant recipients on immunosuppressive drugs, these molds are most likely to infect the lungs. It is estimated that between 5% and 10% of these patients will develop invasive mold disease. These infections can become life-threatening if not treated promptly, yet they are challenging to diagnose, often presenting as lesions on CT scans. Traditionally, diagnosing invasive mold infections involves obtaining a sample of the mold, either through tissue biopsy or bronchoalveolar lavage, where a scope is used to wash out the lungs with saline solution. The mold sample is then cultured and analyzed in a laboratory to determine the appropriate antifungal treatment. However, many immunocompromised patients are too unstable to undergo such invasive procedures, resulting in delayed diagnosis and treatment. Now, a new blood test has been developed that offers a safer and faster alternative to diagnose invasive mold disease, by detecting mold's genetic material, which could replace invasive tests in most cases.

Researchers at Stanford Medicine (Stanford, CA, USA) have been working on this non-invasive alternative for several years—a blood test that can detect small fragments of mold DNA that have entered the bloodstream. The underlying method, known as cell-free DNA polymerase chain reaction (PCR), often referred to as liquid biopsy, has already shown promise in identifying various infections and even cancer. This new mold test was introduced at Stanford Health Care in late 2020. To make it viable, the researchers refined protocols for collecting blood, extracting DNA, and accurately identifying a range of common mold species. With these optimizations in place, the test was ready for comparison with traditional diagnostic methods.

In the new study published in Clinical Infectious Diseases, the research team reviewed 506 cases in which patients suspected of having mold infections underwent both the blood test and a more invasive test within a one-week period. The majority of these patients were immunocompromised. The study found that when both tests were evaluated according to the standard diagnostic criteria for invasive mold disease, the results matched 88.5% of the time. This means that most patients could avoid the risk of invasive procedures. However, the blood test was less likely to detect infections in the sinuses or limbs, and for these areas, tissue biopsy should still be considered. The key advantage of the blood test lies in its faster turnaround time, which takes just one day, whereas invasive procedures can take several days or even weeks to schedule and provide results.

Currently, Stanford Health Care is the only institution offering this new mold test. Since its introduction, demand has been steadily increasing, with around 3,000 tests ordered each month. While the current version of the test requires significant laboratory resources, automation, and trained personnel, the research team is collaborating with companies to commercialize the test. Their goal is to develop a standalone device that can automate the process. Additionally, the team is working on expanding the use of cell-free DNA PCR tests to diagnose other difficult-to-detect infections. One of their initial targets was tuberculosis, the world’s leading infectious cause of death, with a significant portion of cases remaining undiagnosed. However, developing a highly accurate blood test for tuberculosis has proven to be more challenging.

Related Links:
Stanford Medicine

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study demonstrated that electric-field molecular fingerprinting can probe cancer (Photo courtesy of ACS Central Science, 2025, 10.1021/acscentsci.4c02164)

New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma

Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read more

Molecular Diagnostics

view channel
Image: The study validated the Lumipulse p-tau21 automated and scalable blood test system (Photo courtesy of Fujirebio)

Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy

Alzheimer's disease (AD) is a debilitating condition and a leading cause of disability and death worldwide. The availability of reliable diagnostic tools is currently restricted, and diagnosis often relies... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.