We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mutated Muscle Glycoprotein Key to Understanding Muscular Dystrophy

By LabMedica International staff writers
Posted on 11 Jan 2010
Print article
Mutations that change the binding properties of the muscle protein dystroglycan are an underlying cause of several types of muscular dystrophy.

In skeletal muscle, the dystroglycan complex works as a transmembrane linkage between the extracellular matrix and the cytoskeleton. Alpha-dystroglycan is extracellular and binds to laminin in the basement membrane, while beta-dystroglycan is a transmembrane protein and binds to dystrophin, which is a large rod-like cytoskeletal protein. Dystrophin binds to intracellular actin cables. In this way, the dystroglycan complex, which links the extracellular matrix to the intracellular actin cables, is thought to provide structural integrity in muscle tissues. The dystroglycan complex is also known to serve as an agrin receptor in muscle, where it may regulate agrin-induced acetylcholine receptor clustering at the neuromuscular junction. There is also evidence, which suggests the function of dystroglycan as a part of the signal transduction pathway because it is shown that Grb2, a mediator of the Ras-related signal pathway, can interact with the cytoplasmic domain of dystroglycan.

Investigators at the University of Iowa (Iowa City, USA) used mass spectrometry and nuclear magnetic resonance (NMR) to conduct structural analyses of the dystroglycan complex.

They reported in the January 1, 2010, issue of the journal Science that they had identified a phosphorylated O-mannosyl glycan on the mucin-like domain of recombinant alpha-dystroglycan, which was required for laminin binding. Patients with muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, as well as mice with myodystrophy, commonly had defects in a postphosphoryl modification of this phosphorylated O-linked mannose, and that this modification was mediated by the like-acetylglucosaminyltransferase (LARGE) protein.

"Dystroglycan is a complex and unusual glycoprotein. It is heavily covered with many types of sugars. We wanted to know the shape and make up of the unique sugar chain that allows dystroglycan to bind to laminin," said senior author Dr. Kevin Campbell, professor of molecular physiology and biophysics at the University of Iowa. "This phosphate link is very unusual, which may explain why the actual structure of dystroglycan's laminin-binding sugar chain has been a mystery for many years despite the efforts of numerous research teams. The findings help explain what is happening in congenital muscular dystrophies, where the dystroglycan sugar chain is truncated and ends at the phosphate. The bare phosphate does not bind laminin; it has to be further modified."

"If we can discover the entire structure and make up of the sugar chain beyond the phosphate link, we might be able to target some of the enzymes involved in building the sugar chain, and thus, develop therapies to treat congenital muscular dystrophies," said Dr. Campbell.

Related Links:

University of Iowa


Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Automated Cell Counter
QuadCount
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.