We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Analysis of the Cytomegalovirus Proteome Reveals Unanticipated Complexity

By LabMedica International staff writers
Posted on 05 Dec 2012
Print article
Advanced genomic and proteomic analysis techniques have been used for an in-depth study of the proteome of human Cytomegalovirus (HCMV), an incredibly successful pathogen that infects nearly everyone.

The huge 240,000 base pair HCMV genome was sequenced more than 20 years ago, but the viral proteome (the proteins encode by those genes) has not been studied in a comprehensive fashion.

Investigators at the University of California, San Francisco (USA) have now obtained much of the missing proteomic data. They used state-of-the-art ribosome profiling and transcript analysis linked to mass spectrometry to experimentally define the HCMV translation products (proteins) and follow their temporal expression. In translation, messenger RNA (mRNA) produced by transcription is decoded by the ribosomes to produce specific polypeptides that will later fold into active proteins.

Ribosome profiling is a technique that uses mRNA to determine what proteins are being translated. It produces a “global snapshot” of all the ribosomes active in the cell at a particular moment. Consequently, this enables researchers to identify the location of translation start sites, their distribution, and the speed of the translating ribosomes. Ribosome profiling derived from the old discovery that the mRNA within a ribosome can be isolated through the use of nucleases that degrade unprotected mRNA regions. This technique analyzes the ratio of multiple specific mRNAs to proteins being synthesized, to provide insight into global gene expression.

Results published in the November 23, 2012, issue of the journal Science revealed hundreds of previously unidentified open reading frames (sites of protein translation), a fraction of which were confirmed by means of mass spectrometry. Many of these open reading frames were found to encode for exceptionally short protein sequences (fewer than 100 amino acids), and some of the newly identified open reading frames were sequestered inside other open reading frames.

These results unveiled an unanticipated complexity to the HCMV coding capacity and illustrated the role of the regulated use of alternative transcript start sites in enabling tight temporal control of HCMV protein expression and allowing multiple distinct polypeptides to be generated from a single genomic locus.

"The genome of a virus is just a starting point," said senior author Dr. Jonathan Weissman, professor of cellular and molecular pharmacology and of biochemistry and biophysics at the University of California, San Francisco. "Understanding what proteins are encoded by that genome allows us to start thinking about what the virus does and how we can interfere with it… Each of the proteins we have identified has the potential to tell us how this virus is manipulating its host cell."

Related Links:
University of California, San Francisco

New
Gold Member
LEISHMANIA Test
LEISHMANIA ELISA
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Mumps Virus Test
ReQuest Mumps IgG
New
Urine Analyzer
URIT-180

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.