We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Time-Dependent Molecular Switch Controls Axon-Spreading in the Developing Brain

By LabMedica International staff writers
Posted on 05 Dec 2012
Research on the formation of the nervous system has revealed a time-dependent molecular switch that controls the spread of axons in the embryonic brain and the establishment of functional neural circuits.

Investigators at the Montreal Neurological Institute (Canada) examined the factors responsible for correct spreading of axons in the developing brain. More...
They reported in the November 21, 2012, online edition of the journal Neuron that the protein Sonic Hedgehog (Shh) attracted axons in the developing spinal cord ventrally toward the floorplate. However, after crossing the floorplate, these axons switched their response to Shh from attraction to repulsion, so that they were repelled anteriorly by a posterior-high/anterior-low Shh gradient along the longitudinal axis.

The activity of Shh was found to be controlled by a group of proteins known as 14-3-3. These proteins comprise a family of conserved regulatory molecules expressed in all eukaryotic cells. The name 14-3-3 refers to the particular elution and migration pattern of these proteins on DEAE-cellulose chromatography and starch-gel electrophoresis. The 14-3-3 proteins eluted in the 14th fraction of bovine brain homogenate and were found on positions 3.3 of subsequent electrophoresis. 14-3-3 proteins have the ability to bind a multitude of functionally diverse signaling proteins, including kinases, phosphatases, and transmembrane receptors. More than 100 signaling proteins have been reported as 14-3-3 ligands.

The investigators showed that inhibition of 14-3-3 protein activity converted Shh-mediated repulsion of aged dissociated neurons to attraction and prevented the correct anterior turn. Conversely, overexpression of 14-3-3 proteins was sufficient to drive the switch from Shh-mediated attraction to repulsion both in vitro and in vivo.

“To properly form neural circuits, developing axons follow external signals to reach the right targets,” said senior author Dr. Frédéric Charron, professor of medicine at the Montreal Neurological Institute. “We discovered that nerve cells also have an internal clock, which changes their response to external signals as they develop over time.”

Related Links:
Montreal Neurological Institute



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The world’s largest metabolomic dataset sets the stage for pinprick tests to predict disease years before symptoms (Photo courtesy of Nightingale Health)

Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear

Many serious conditions begin silently years before symptoms appear, yet routine screening rarely detects these early physiological shifts. A powerful new solution is emerging: pinprick blood tests driven... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.