We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Stem Cells Loaded with Oncolytic Herpes Virus Destroy Brain Tumors in Mouse Model

By LabMedica International staff writers
Posted on 26 May 2014
Print article
Image: Stem cells loaded with cancer-killing herpes virus attack a brain tumor cell. Tumor cells in green. oHSV-loaded stem cells in red. oHSV-infected tumor cells in yellow (Photo courtesy of Dr. Khalid Shah, Harvard University).
Image: Stem cells loaded with cancer-killing herpes virus attack a brain tumor cell. Tumor cells in green. oHSV-loaded stem cells in red. oHSV-infected tumor cells in yellow (Photo courtesy of Dr. Khalid Shah, Harvard University).
Cancer researchers treated mouse models of the human brain tumor glioblastoma multiforme by injecting the animals with stem cells loaded with oncolytic herpes virus and treated virus-resistant tumors with oncolytic herpes viruses genetically engineered to express the proapoptotic cytokine TRAIL.

Glioblastoma multiforme (GBM) is an aggressive brain tumor, fatal within one year from diagnosis in most patients despite intensive treatment with surgery, radiation, and chemotherapy. The migratory and microscopically invasive nature of GBM as well as its resistance to chemotherapy renders conventional therapies inadequate in its treatment. Attempts to treat GMB with oncolytic viruses have been unsuccessful mainly because of insufficient viral spread after tumor resection.

Investigators at Harvard University (Cambridge, MA, USA) loaded human mesenchymal stem cells (MSC) with oncolytic herpes simplex virus (MSC-oHSV), and the fate of the stem cells following injection into mice was followed by real-time imaging in vitro and in vivo. The efficacy of MSC-oHSV and its proapoptotic variant, oHSV-TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) encapsulated in synthetic extracellular matrix (sECM), was tested in different mouse GBM models, which more accurately reflected the current clinical settings of malignant, resistant, and resected tumors.

TRAIL is a cytokine that is produced and secreted by most normal tissue cells. It causes apoptosis primarily in tumor cells by binding to certain death receptors. Since the mid-1990s it has been used as the basis for several anticancer drugs, but was not been found to have any significant survival benefit.

Results published in the June 2014 online edition of the Journal of the [US] National Cancer Institute revealed that the MSC-oHSVs effectively produced oHSV progeny, which resulted in killing of GBMs in vitro and in vivo mediated by a dynamic process of oHSV infection and tumor destruction. sECM-encapsulated MSC-oHSVs resulted in statistically significant increased anti-GBM efficacy compared with direct injection of purified oHSV in a preclinical model of GBM resection, resulting in prolonged median survival of the mice. In a model of virus resistant tumors, it was seen that MSCs loaded with oHSV-TRAIL effectively induced apoptosis-mediated killing and prolonged median survival of the mice.

“Our approach can overcome problems associated with current clinical procedures,” said senior author Dr. Khalid Shah, professor of medicine at Harvard University. “The work will have direct implications for designing clinical trials using oncolytic viruses, not only for brain tumors, but for other solid tumors. We know that 70%–75% of glioblastoma patients undergo surgery for tumor debulking, and we have previously shown that MSCs encapsulated in biocompatible gels can be used as therapeutic agents in a mouse model that mimics this debulking. So, we loaded MSCs with oncolytic herpes virus and encapsulated these cells in biocompatible gels and applied the gels directly onto the adjacent tissue after debulking. We then compared the efficacy of virus-loaded, encapsulated MSCs versus direct injection of the virus into the cavity of the debulked tumors. They survived because the virus does not get washed out by the cerebrospinal fluid that fills the cavity. Previous studies that have injected the virus directly into the resection cavity did not follow the fate of the virus in the cavity. However, our imaging and side-by-side comparison studies showed that the naked virus rarely infects the residual tumor cells. This could give us insight into why the results from clinical trials with oncolytic viruses alone were modest.”

Related Links:

Harvard University


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Mumps Virus Test
ReQuest Mumps IgG
New
3-Position Stirrer
ST-200 and SHP-200 Series

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.