We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Bacterial Populations Rapidly Evolve a Time-linked Tolerance to Antibiotics

By LabMedica International staff writers
Posted on 14 Jul 2014
Print article
A team of molecular microbiologists has found that some types of bacteria develop tolerance towards antibiotic treatment by "learning" how to time the length of exposure to the drug and evolving an extended period of dormancy that protects the organisms from the effects of the antibiotic.

Investigators at the Hebrew University of Jerusalem (Israel) followed the evolution of bacterial populations under intermittent exposure to the high concentrations of antibiotics used in the clinic and characterized the evolved strains in terms of both resistance (growth of microorganisms in the constant presence of an antibiotic, provided that the concentration of the antibiotic is not too high) and tolerance (survival of microorganisms during antibiotic treatment, even at high antibiotic concentrations, as long as the duration of the treatment is limited).

Initially bacterial populations were treated with antibiotics for three hours each day. Exposure times were later increased to five and eight hours per day.

By monitoring the phenotypic changes at the population and single-cell levels, the investigators found that after only 10 days the first adaptive change to antibiotic stress became apparent. This was the development of tolerance towards the antibiotic through a major adjustment in the single-cell lag-time distribution, without a change in resistance. They also found that the lag time of bacteria before regrowth was optimized to match the duration of the antibiotic-exposure interval. All bacterial strains adapted by specific genetic mutations, which became fixed in the evolved populations.

The investigators also reported that whole genome sequencing of the evolved strains and restoration of the wild-type alleles allowed the identification of target genes involved in this antibiotic-driven phenotype, which they called "tolerance by lag" (tbl).

The results of this study, which was published in the June 25, 2014, online edition of the journal Nature, demonstrated that bacteria can evolve within days. The investigators expect that better understanding of lag-time evolution as a key determinant of the survival of bacterial populations under high antibiotic concentrations will lead to new approaches to preventing the evolution of antibiotic resistance.

Related Links:

Hebrew University of Jerusalem


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Automated Biochemistry Analyzer
AutoChem B861
New
RFID Tag
AD-302 M730

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.