We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bacterial Populations Rapidly Evolve a Time-linked Tolerance to Antibiotics

By LabMedica International staff writers
Posted on 14 Jul 2014
Print article
A team of molecular microbiologists has found that some types of bacteria develop tolerance towards antibiotic treatment by "learning" how to time the length of exposure to the drug and evolving an extended period of dormancy that protects the organisms from the effects of the antibiotic.

Investigators at the Hebrew University of Jerusalem (Israel) followed the evolution of bacterial populations under intermittent exposure to the high concentrations of antibiotics used in the clinic and characterized the evolved strains in terms of both resistance (growth of microorganisms in the constant presence of an antibiotic, provided that the concentration of the antibiotic is not too high) and tolerance (survival of microorganisms during antibiotic treatment, even at high antibiotic concentrations, as long as the duration of the treatment is limited).

Initially bacterial populations were treated with antibiotics for three hours each day. Exposure times were later increased to five and eight hours per day.

By monitoring the phenotypic changes at the population and single-cell levels, the investigators found that after only 10 days the first adaptive change to antibiotic stress became apparent. This was the development of tolerance towards the antibiotic through a major adjustment in the single-cell lag-time distribution, without a change in resistance. They also found that the lag time of bacteria before regrowth was optimized to match the duration of the antibiotic-exposure interval. All bacterial strains adapted by specific genetic mutations, which became fixed in the evolved populations.

The investigators also reported that whole genome sequencing of the evolved strains and restoration of the wild-type alleles allowed the identification of target genes involved in this antibiotic-driven phenotype, which they called "tolerance by lag" (tbl).

The results of this study, which was published in the June 25, 2014, online edition of the journal Nature, demonstrated that bacteria can evolve within days. The investigators expect that better understanding of lag-time evolution as a key determinant of the survival of bacterial populations under high antibiotic concentrations will lead to new approaches to preventing the evolution of antibiotic resistance.

Related Links:

Hebrew University of Jerusalem


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.