We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mechanical Stress Modifies Growth of Tumor Cultures and Response to Chemotherapeutic Agents

By LabMedica International staff writers
Posted on 18 Aug 2015
Print article
Image: Electron micrograph showing bone cancer cells populating the surface of a bioscaffold that had been placed in a flow perfusion bioreactor to evaluate the cells' response to the mechanical forces they experience in the body (Photo courtesy of the University of Texas MD Anderson Cancer Center and Rice University).
Image: Electron micrograph showing bone cancer cells populating the surface of a bioscaffold that had been placed in a flow perfusion bioreactor to evaluate the cells' response to the mechanical forces they experience in the body (Photo courtesy of the University of Texas MD Anderson Cancer Center and Rice University).
A more effective method of assessing the response of tumors to chemotherapeutic drugs utilizes three-dimensional culture growth combined with the application of mechanical stress factors that the tumor would experience in vivo.

Investigators at Rice University (Houston, TX, USA) and the University of Texas MD Anderson Cancer Center (Houston, USA) developed a method for culturing Ewing sarcoma (ES) cells on three-dimensional scaffolds within a flow perfusion bioreactor, which provided mechanical stimulation by changing the fluid viscosity and flow rate to induce flow-derived shear stress.

Results published in the August 3, 2015, edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) revealed that in the 10 day study, the steady flow of fluid through the scaffold prompted the sarcoma cells to proliferate throughout the structure. Shear stress induced the cells to significantly increase their production of IGF-1 protein and also down-regulated the production of two other cancer-related proteins, c-KIT and HER2, compared with tumors grown in static two-dimensional cultures.

This finding was particularly relevant, given the central role of the IGF-1/IGF-1 receptor (IGF-1R) pathway in ES tumorigenesis and as a promising clinical target. The insulin-like growth factors (IGFs) are proteins with high sequence similarity to insulin. IGFs are part of a complex system that cells use to communicate with their physiologic environment. This complex system consists of two cell-surface receptors (IGF-IR and IGF-IIR), two ligands (IGF-I and IGF-II), a family of six high-affinity IGF-binding proteins (IGFBP 1-6), as well as associated IGFBP degrading enzymes.

The use of a tissue-engineered model for this study, rather than human tumors or xenografts, enabled precise control of the forces experienced by the ES cells. This controlled environment enabled the observation that flow perfusion enhanced, in a rate-dependent manner, the sensitivity of ES cells to dalotuzumab, a drug that disrupts the IGF-1 pathway. The conditions used in this study allowed the investigators to demonstrate the shear stress-dependent ES cell sensitivity to dalotuzumab, highlighting the importance of biomechanical stimulation on ES-acquired drug resistance to IGF-1R inhibition.

"Mechanical forces are present in our bodies even though we are not always aware of them," said first author Dr. Marco Santoro, a graduate researcher in chemical and biomolecular engineering at The University of Texas MD Anderson Cancer Center. "Our cells are sensitive to the forces around them and change their behavior accordingly. Tumor cells behave the same way, changing their function depending on the forces they sense. For the first time, we showed how the effect of the drug changes according to the forces experienced by the cells. IGF-1 is crucial for this kind of sarcoma, which relies on this mechanism for growth. We show that the higher the mechanical stimulation, the more pronounced the secretion of this particular protein."

Related Links:

Rice University
University of Texas MD Anderson Cancer Center


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Strips
11 Parameter Urine Strips
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.