We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Mechanical Stress Modifies Growth of Tumor Cultures and Response to Chemotherapeutic Agents

By LabMedica International staff writers
Posted on 18 Aug 2015
A more effective method of assessing the response of tumors to chemotherapeutic drugs utilizes three-dimensional culture growth combined with the application of mechanical stress factors that the tumor would experience in vivo.

Investigators at Rice University (Houston, TX, USA) and the University of Texas MD Anderson Cancer Center (Houston, USA) developed a method for culturing Ewing sarcoma (ES) cells on three-dimensional scaffolds within a flow perfusion bioreactor, which provided mechanical stimulation by changing the fluid viscosity and flow rate to induce flow-derived shear stress. More...


Results published in the August 3, 2015, edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) revealed that in the 10 day study, the steady flow of fluid through the scaffold prompted the sarcoma cells to proliferate throughout the structure. Shear stress induced the cells to significantly increase their production of IGF-1 protein and also down-regulated the production of two other cancer-related proteins, c-KIT and HER2, compared with tumors grown in static two-dimensional cultures.

This finding was particularly relevant, given the central role of the IGF-1/IGF-1 receptor (IGF-1R) pathway in ES tumorigenesis and as a promising clinical target. The insulin-like growth factors (IGFs) are proteins with high sequence similarity to insulin. IGFs are part of a complex system that cells use to communicate with their physiologic environment. This complex system consists of two cell-surface receptors (IGF-IR and IGF-IIR), two ligands (IGF-I and IGF-II), a family of six high-affinity IGF-binding proteins (IGFBP 1-6), as well as associated IGFBP degrading enzymes.

The use of a tissue-engineered model for this study, rather than human tumors or xenografts, enabled precise control of the forces experienced by the ES cells. This controlled environment enabled the observation that flow perfusion enhanced, in a rate-dependent manner, the sensitivity of ES cells to dalotuzumab, a drug that disrupts the IGF-1 pathway. The conditions used in this study allowed the investigators to demonstrate the shear stress-dependent ES cell sensitivity to dalotuzumab, highlighting the importance of biomechanical stimulation on ES-acquired drug resistance to IGF-1R inhibition.

"Mechanical forces are present in our bodies even though we are not always aware of them," said first author Dr. Marco Santoro, a graduate researcher in chemical and biomolecular engineering at The University of Texas MD Anderson Cancer Center. "Our cells are sensitive to the forces around them and change their behavior accordingly. Tumor cells behave the same way, changing their function depending on the forces they sense. For the first time, we showed how the effect of the drug changes according to the forces experienced by the cells. IGF-1 is crucial for this kind of sarcoma, which relies on this mechanism for growth. We show that the higher the mechanical stimulation, the more pronounced the secretion of this particular protein."

Related Links:

Rice University
University of Texas MD Anderson Cancer Center



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.