We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Novel Molecular Signaling Pathway Inhibits Lung Cancer Growth and Metastasis

By LabMedica International staff writers
Posted on 23 Nov 2015
A gene that had not been linked previously to lung cancer was found to be a critical component of a novel molecular signaling pathway that restricts lung cancer progression and metastasis.

Investigators at Northwestern University (Evanston, IL, USA) based the current study on emerging evidence that the neuronal guidance molecule SLIT played a role in tumor suppression, as SLIT-encoding genes were found to be inactivated in several types of cancer, including lung cancer. More...
The SLIT gene produces the protein Slit, which in conjunction with the protein Robo (Roundabout) constitute a cell signaling pathway with many diverse functions including axon guidance and angiogenesis. Slit refers to a secreted protein which is most widely known as a repulsive axon guidance cue and Robo to its transmembrane protein receptor.

The investigators reported in the November 3, 2015, online edition of the Journal of Clinical Investigation that SLIT inhibited cancer cell migration by activating RhoA. RhoA (Ras homolog gene family, member A) is a small GTPase protein known to regulate the actin cytoskeleton in the formation of stress fibers. This protein is essential for the signaling function of the Rho GTPase complex.

The investigators found that myosin 9b (Myo9b) was a ROBO-interacting protein that suppressed RhoA activity in lung cancer cells. X-ray crystallography structural analyses revealed that the RhoGAP domain of Myo9b contained a unique patch that specifically recognized RhoA. The ROBO intracellular domain interacted with the Myo9b RhoGAP domain and inhibited its activity. Therefore, SLIT-dependent activation of RhoA was mediated by ROBO inhibition of Myo9b. In a mouse model, compared with control lung cancer cells, SLIT-expressing cells had a decreased capacity for tumor formation and lung metastasis.

In lung cancer cells, the intracellular domain (ICD) of ROBO directly interacted with the Myo9b RhoGAP domain and inhibited its activity. Thus, the negative regulation of Myo9b by SLIT/ROBO signaling in lung cancer cells activated RhoA and inhibited cell migration. Supporting this model, the data showed that SLIT inhibited lung tumor invasion and metastasis in a xenograft mouse model. Furthermore, Myo9b was highly expressed in human lung cancer tissues as compared with levels observed in the control samples. Consistently, increased Myo9b expression was associated with lymph node metastasis, advanced tumor stage, and poor patient survival.

These results implicate the existence of a previously unknown SLIT/ROBO/Myo9b/RhoA signaling pathway that inhibits cell migration and suppresses lung cancer metastasis.

“Elevated Myo9b expression is associated with fast lung cancer progression and poor prognosis,” said senior author Dr. Jane Wu, professor of neurology and psychiatry at Northwestern University. “These observations suggest the exciting possibility of developing Myo9b as a new biomarker for cancer, especially lung cancer. Our study provides new insights into the molecular and cellular mechanisms underlying lung cancer invasion and metastasis, a critical process that often leads to fatal consequence. Our data also provide a solid foundation for developing new diagnostic and therapeutic tools for lung cancer.”

Related Links:

Northwestern University



Gold Member
Veterinary Hematology Analyzer
Exigo H400
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Automated Biochemical Analyzer
iBC 900
New
Pan-Cancer Panel
TruSight Oncology 500
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The new study aims to enhance colorectal cancer prevention by identifying polyp molecular signals (Photo courtesy of Shutterstock)

RNA Screening Test Could Detect Colon Polyps Before They Become Cancerous

Colorectal cancer has become a growing health crisis, especially as it increasingly affects younger adults in their 20s, 30s, and 40s, while screening rates remain low. Colorectal cancer is now the leading... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: Micrograph showing the distribution of misfolded proteins in myeloma cells (Photo courtesy of Helmholtz Munich)

Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels

Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.