We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Imaging Technique Provides Insights on Telomere Structure

By LabMedica International staff writers
Posted on 16 Feb 2016
A new microscopy technique enables direct visualization of DNA wrapping outside and around histone proteins, such as in telomeres.

Developed by researchers at North Carolina State University (NCSU; Raleigh, USA), the new imaging technique, known as dual-resonance-frequency-enhanced electrostatic force microscopy (DREEM), utilizes the fact that DNA is negatively charged along its backbone. More...
By applying both direct and alternating current biases between the atomic force microscopy (AFM) probe and the sample surface, the technique can detect very weak electrostatic interaction differences when it scans over protein, as compared to DNA regions.

By using DREEM, the researchers were able to see the DNA's path through the T-loop formation created by telomeric repeat-binding factor 2 (TRF2), a key protein in telomere complex structural integrity. The researchers were thus able to envisage how TRF2 compacts DNA, concluding that there may be two orders of DNA compaction within the telomere. First, DNA wraps around a TRF2 protein in the interior of the complex; then, multiple TRF2 molecules come together and create DNA loops that stick out from the TRF2 proteins. The study was published on February 9, 2016, in Nature Scientific Reports.

“We think that this protruding loop provides the entering site for the telomere overhangs to tuck in to form the T-loop structure. This process ultimately helps to maintain the protective structure that prevents fusion of chromosomes or the slow erosion of telomere DNA,” said lead author physicist Hong Wang, PhD. “Revealing DNA paths in TRF2 complexes provides new mechanistic insights into structure-function relationships underlying telomere maintenance pathways.”

Telomeres are essentially caps on the ends of linear DNA chromosomes. In healthy cells, telomeres protect the chromosome by tucking away any overhanging ends of DNA strands to form a lasso-like structure known as a T-loop. Loss of telomere function can activate a DNA damage response, leading to cell senescence, nucleolytic degradation of the natural chromosome ends, or end-to-end fusions.

Related Links:

North Carolina State University



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Drug Test Kit
DrugCheck 3000
New
Modular Hemostasis Automation Solution
CN Track
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.