Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Inactivation of Enzyme Corrects Alzheimer's Disease Defects

By LabMedica International staff writers
Posted on 28 Feb 2019
A team of neurodegenerative disease researchers identified a molecular mechanism that impedes protein synthesis and may contribute to the loss of memory and synaptic plasticity that characterizes Alzheimer's disease (AD).

Maintenance of memory and synaptic plasticity depend on de novo protein synthesis, dysregulation of which is implicated in AD. More...
Recent studies have demonstrated the AD-associated hyperphosphorylation of the mRNA translation factor eukaryotic elongation factor 2 (EEF2), which results in inhibition of protein synthesis.

The eukaryotic elongation factor 2 kinase (EEF2K) gene encodes a highly conserved protein kinase in the calmodulin-mediated signaling pathway that links activation of cell surface receptors to cell division. This kinase is involved in the regulation of protein synthesis by phosphorylating EEF2 and thus inhibiting its function. The activity of this kinase is increased in many cancers.

Investigators at Wake Forest Baptist Medical Center (Winston-Salem, NC, USA) examined whether suppression of EEF2 phosphorylation could improve protein synthesis capacity and AD-associated cognitive and synaptic impairments.

They reported in the February 1, 2019, issue of the Journal of Clinical Investigation that genetic inactivation of EEF2K in two AD mouse models suppressed AD-associated EEF2 hyperphosphorylation and improved memory deficits and hippocampal long-term potentiation (LTP) impairments without altering brain amyloid beta (Abeta) pathology. Furthermore, EEF2K reduction alleviated AD-associated defects in dendritic spine morphology, postsynaptic density formation, de novo protein synthesis, and dendritic polyribosome assembly. These results linked EEF2K/EEF2 signaling dysregulation to AD neurological defects and offer a feasible therapeutic target to correct them.

“Alzheimer’s is such a devastating disease and currently there is no cure or effective therapy,” said senior author Dr. Tao Ma, assistant professor of gerontology and geriatric medicine at Wake Forest Baptist Medical Center. “All completed clinical trials of new drugs have failed so there is clearly a need for novel therapeutic targets for potential treatments. These findings are encouraging and provide a new pathway for further research.”

Related Links:
Wake Forest Baptist Medical Center


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.