We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Inactivation of Enzyme Corrects Alzheimer's Disease Defects

By LabMedica International staff writers
Posted on 28 Feb 2019
Print article
Image: Structure of the C-terminal helical repeat domain of eukaryotic elongation factor 2 kinase (EEF2K) (Photo courtesy of the U.S. National Center for Biotechnology Information).
Image: Structure of the C-terminal helical repeat domain of eukaryotic elongation factor 2 kinase (EEF2K) (Photo courtesy of the U.S. National Center for Biotechnology Information).
A team of neurodegenerative disease researchers identified a molecular mechanism that impedes protein synthesis and may contribute to the loss of memory and synaptic plasticity that characterizes Alzheimer's disease (AD).

Maintenance of memory and synaptic plasticity depend on de novo protein synthesis, dysregulation of which is implicated in AD. Recent studies have demonstrated the AD-associated hyperphosphorylation of the mRNA translation factor eukaryotic elongation factor 2 (EEF2), which results in inhibition of protein synthesis.

The eukaryotic elongation factor 2 kinase (EEF2K) gene encodes a highly conserved protein kinase in the calmodulin-mediated signaling pathway that links activation of cell surface receptors to cell division. This kinase is involved in the regulation of protein synthesis by phosphorylating EEF2 and thus inhibiting its function. The activity of this kinase is increased in many cancers.

Investigators at Wake Forest Baptist Medical Center (Winston-Salem, NC, USA) examined whether suppression of EEF2 phosphorylation could improve protein synthesis capacity and AD-associated cognitive and synaptic impairments.

They reported in the February 1, 2019, issue of the Journal of Clinical Investigation that genetic inactivation of EEF2K in two AD mouse models suppressed AD-associated EEF2 hyperphosphorylation and improved memory deficits and hippocampal long-term potentiation (LTP) impairments without altering brain amyloid beta (Abeta) pathology. Furthermore, EEF2K reduction alleviated AD-associated defects in dendritic spine morphology, postsynaptic density formation, de novo protein synthesis, and dendritic polyribosome assembly. These results linked EEF2K/EEF2 signaling dysregulation to AD neurological defects and offer a feasible therapeutic target to correct them.

“Alzheimer’s is such a devastating disease and currently there is no cure or effective therapy,” said senior author Dr. Tao Ma, assistant professor of gerontology and geriatric medicine at Wake Forest Baptist Medical Center. “All completed clinical trials of new drugs have failed so there is clearly a need for novel therapeutic targets for potential treatments. These findings are encouraging and provide a new pathway for further research.”

Related Links:
Wake Forest Baptist Medical Center

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Epstein-Barr Virus Test
ZEUS IFA Epstein-Barr Virus VCA IgG Test
New
Syphilis Infection Test
IMPACT RPR

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.