We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Technique Detects Breaks in Mitochondrial DNA

By LabMedica International staff writers
Posted on 22 Apr 2019
Print article
Image: A catalog of deletions (4,489) observed in brain samples derived from both healthy subjects and subjects with psychiatric disorders. The burden of deletions accumulates in various brain regions during aging. Many deletions play a major role in classical mitochondrial disorders, and deletion burden is viewed as an indicator of long lasting mitochondrial oxidative stress. Each colored ribbon is composed of individual lines showing the relative amount of deletions in brain samples in the catalog (Photo courtesy of the University of California, Irvine).
Image: A catalog of deletions (4,489) observed in brain samples derived from both healthy subjects and subjects with psychiatric disorders. The burden of deletions accumulates in various brain regions during aging. Many deletions play a major role in classical mitochondrial disorders, and deletion burden is viewed as an indicator of long lasting mitochondrial oxidative stress. Each colored ribbon is composed of individual lines showing the relative amount of deletions in brain samples in the catalog (Photo courtesy of the University of California, Irvine).
The Splice-Break pipeline is a recently described technique that can detect and quantify mitochondrial DNA (mtDNA) deletions at a high level of resolution.

Deletions in the mitochondrial genome have been implicated in numerous human disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. Among these "mitochondrial myopathies" are Kearns–Sayre syndrome (KSS), Pearson Syndrome (PS), chronic progressive external ophthalmoplegia (CPEO), Leigh syndrome, and diabetes mellitus.

Investigators at the University of California, Irvine (USA) described a catalogue of 4,489 putative mtDNA deletions, including their frequency and relative read rate. To do this, they employed a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Their bioinformatics pipeline incorporated MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices.

The investigators used their technique to analyze 93 samples from postmortem brain and blood. They found that the 4977-base pairs "common deletion" was neither the most frequent deletion nor the most abundant and that brain contained significantly more deletions than blood.

“Taken together, the pipeline will enable us to look in many brain regions for an accumulation of damage to mitochondria DNA for individuals with various psychiatric symptoms such as depression and psychosis. The ultimate use will be to test other more accessible samples such as blood, saliva, or cerebrospinal fluid from patients to estimate the damage to mitochondria, and quickly identify those individuals who may benefit from drugs and other treatments that give a mitochondria boost and improve psychiatric symptoms,” said senior author Dr. Marquis P. Vawter, a researcher in the department of psychiatry and human behavior at the University of California, Irvine. “This technique allows us to use a single test to measure the accumulation of many types of these deletions and to determine an overall burden of these deletions upon mitochondria functions.”

The study was published in the March 14, 2019, online edition of the journal Nucleic Acids Research.

Related Links:
University of California, Irvine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.