We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Unexplained Liver Disease Diagnosed by Whole-Exome Sequencing

By LabMedica International staff writers
Posted on 29 Apr 2019
Print article
Image: The use of WES on adults with liver disease of unknown cause illustrates the potential clinical value of genome rounds in the individual assessment and medical care of patients (Photo courtesy of the Yale School of Medicine / Journal of Hepatology).
Image: The use of WES on adults with liver disease of unknown cause illustrates the potential clinical value of genome rounds in the individual assessment and medical care of patients (Photo courtesy of the Yale School of Medicine / Journal of Hepatology).
A recent paper promoted the use of whole-exome sequencing (WES) to detect and diagnose cases of unexplained liver disease.

Chronic liver disease is a significant health problem affecting more than four million people and leading to over 40,000 deaths annually in the United States alone. It often remains undiagnosed for many years until overt manifestations of chronic liver disease emerge and liver injury has already reached catastrophic proportions.

Adult patients suffering from unexplained liver disease represent an understudied and underserved population, and, furthermore, the use of whole-exome sequencing (WES) to diagnose the disease remains poorly studied.

To correct this deficiency, investigators at Yale School of Medicine (New Haven, CT, USA) performed WES and deep phenotyping of 19 unrelated adult patients with idiopathic liver disease following an ambiguous conventional work-up performed by a hepatologist. WES is a technique for sequencing all the approximately 20,000 human protein-coding genes. It is suitable for both clinical use and translational research studies.

The investigators reported that in five cases, genomic analysis led to diagnosis and informed treatment and management of the disease. For example, in one case, molecular diagnosis enabled initiation of leptin replacement therapy that restored liver function and decreased daily insulin requirements. In two of the cases, a mitochondrial disorder due to a homozygous pathogenic variant enabled initiation of disease preventive measures including supplementation with antioxidants.

"This study provides evidence that a subset of adult patients who suffer from liver disease of indeterminate etiology with or without other comorbidities harbor an underlying Mendelian disorder, which may be unrecognized during their entire childhood until genetic testing is performed," said senior author Dr. Silvia Vilarinho, assistant professor of medicine and pathology at Yale School of Medicine. "Our data highlight the importance of using WES in the investigation of liver disease of unknown cause so that we may start developing an understanding of what clinical presentations or diseases are genetic and may remain undiagnosed until adulthood."

"Advances in human genomics through next generation sequencing technology have created an unprecedented opportunity for genetic investigation and clinical diagnosis," said Dr. Vilarinho. "However, to date, most studies that investigate the use of next generation sequencing technologies in diagnosis and personalized medical care have been performed in either pediatric or cancer patients. The clinical utility of these approaches for a broader spectrum of diseases among adults remains poorly studied."

The WES study was described in the April 1, 2019, online edition of the Journal of Hepatology.

Related Links:
Yale School of Medicine

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Entamoeba One Step Card Test
CerTest Entamoeba
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.