We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Stress-Induced tRNA Fragments Prove Early Predictors of Epileptic Seizures

By LabMedica International staff writers
Posted on 24 Jun 2019
Print article
: A tertiary structure of transfer RNA (tRNA) (Photo courtesy of Wikimedia Commons).
: A tertiary structure of transfer RNA (tRNA) (Photo courtesy of Wikimedia Commons).
Elevated levels of stress-induced fragments of transfer RNA in the blood may serve as biomarkers that indicate potential for an epileptic seizure hours before the event actually occurs.

A transfer RNA (abbreviated tRNA) is an adaptor molecule composed of ribonucleic acid, typically 76 to 90 nucleotides in length, which serves as the physical link between the mRNA and the amino acid sequence of proteins. tRNA does this by carrying an amino acid to the protein synthetic machinery of a cell (ribosome) as directed by a three-nucleotide sequence (codon) in a molecule of mRNA. As such, tRNAs are a necessary component of translation, the biological synthesis of new proteins in accordance with the genetic code. When cells are stressed, tRNAs are cut into fragments.

Investigators at the Royal College of Surgeons in Ireland (Dublin) and the related biotech company FutureNeuro (Dublin, Ireland) proposed that higher levels of tRNA fragments in the blood might indicate that brain cells were under stress in the build up to a seizure event.

To test this hypothesis, the investigators collected plasma samples during video-EEG monitoring of focal epilepsy patients. Small RNA sequencing identified significant differences in three tRNA fragments (5′GlyGCC, 5′AlaTGC, and 5′GluCTC) between epilepsy patients and control subjects. Levels of these tRNA fragments were higher in pre-seizure than post-seizure samples, suggesting they may serve as biomarkers of seizure risk in epilepsy patients.

The investigators designed PCR-based assays to quantify tRNA fragments in a cohort of pre- and post-seizure plasma samples from focal epilepsy patients and healthy controls. Analysis of the results indicated that tRNA fragments potently distinguished pre- from post-seizure patients. Furthermore, elevated tRNA fragments levels were not detected in patients with psychogenic non-epileptic seizures, and did not result from medication tapering.

"New technologies to remove the unpredictability of uncontrolled seizures for people with epilepsy are a very real possibility," said contributing author Dr. David Henshall, professor of molecular physiology and neuroscience at the Royal College of Surgeons in Ireland. "Building on this research we in FutureNeuro hope to develop a test prototype, similar to a blood sugar monitor that can potentially predict when a seizure might occur."

The tRNA biomarker study was published in the April 30, 2019, online edition of the Journal of Clinical Investigation.

Related Links:
The Royal College of Surgeons in Ireland
FutureNeuro


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Myocardial Infarction Test
Savvycheck SensA Heart
New
RNA/DNA Extraction Instrument
QIAcube Connect Instrument

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.