We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Using Transcriptome Analysis to Detect Asymptomatic Alzheimer’s Disease

By LabMedica International staff writers
Posted on 29 Jul 2019
Print article
Image: In brains affected by Alzheimer’s disease, abnormal levels of the beta-amyloid protein clump together to form plaques (seen in brown) that collect between neurons and disrupt cell function. Abnormal collections of the tau protein accumulate and form tangles (seen in blue) within neurons, harming synaptic communication between nerve cells (Photo courtesy of the [U.S.] National Institute on Aging).
Image: In brains affected by Alzheimer’s disease, abnormal levels of the beta-amyloid protein clump together to form plaques (seen in brown) that collect between neurons and disrupt cell function. Abnormal collections of the tau protein accumulate and form tangles (seen in blue) within neurons, harming synaptic communication between nerve cells (Photo courtesy of the [U.S.] National Institute on Aging).
Transcriptome analysis was used as a method for detecting individuals with Alzheimer’s disease (AD) who were not yet displaying symptoms of the disorder.

Currently there are no good methods for detecting asymptomatic AD patients despite the fact that they may share similar neuropathological burdens as symptomatic individuals while experiencing significantly different rates of cognitive decline.

To develop a method for diagnosing asymptomatic AD patients, investigators at the University of California, San Diego (USA) used the transcriptome as a proxy for functional state, and selected 414 expression profiles of symptomatic AD subjects and age-matched non-demented controls from a community-based neuropathological study. Because it includes all mRNA transcripts in the cell, the transcriptome reflects the genes that are being actively expressed at any given time. Unlike the genome, which is roughly fixed for a given cell line (excluding mutations), the transcriptome can vary with external environmental conditions.

Results of the transcriptome survey revealed that by combining brain tissue-specific protein interactomes (an interactome is the whole set of molecular interactions in a particular cell) with gene networks, the investigators were able to identify functionally distinct composite clusters of genes that revealed extensive changes in expression levels in AD. Global expression for clusters broadly corresponding to synaptic transmission, metabolism, cell cycle, survival, and immune response were downregulated, while the upregulated cluster included largely uncharacterized processes.

These results highlighted the utility of integrating protein interactions with gene perturbations to generate a comprehensive framework for characterizing alterations in the molecular network as applied to AD.

“One of the big problems in AD research is identifying patients at risk at the right time,” said senior author Dr. Robert Rissman, professor of neurosciences at the University of California, San Diego. “Understanding the gene networks that may change in specific patient groups can help streamline clinical trials recruitment efforts and reduce costs and time to enroll trials. With the field shifting more and more toward pre-symptomatic disease, we need to expand our understanding of the molecular mechanisms that underlie the entire disease spectrum.”

The transcriptome analysis study was published in the July 23, 2019, issue of the journal Cell Reports.

Related Links:
University of California, San Diego

Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Cortisol/Cortisone Saliva Controls
MassCheck Chromsystems Saliva Controls
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.