We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Single Mutation Linked to Fatty Disorders of Liver and Skin

By LabMedica International staff writers
Posted on 05 Aug 2019
Print article
Image: A micrograph of non-alcoholic fatty liver disease (NAFLD). The liver has a prominent (centrilobular) macrovesicular steatosis (white/clear round/oval spaces) and mild fibrosis (green). The hepatocytes stain red. Macrovesicular steatosis is lipid accumulation that is so large it distorts the cell\'s nucleus (Photo courtesy of Wikimedia Commons).
Image: A micrograph of non-alcoholic fatty liver disease (NAFLD). The liver has a prominent (centrilobular) macrovesicular steatosis (white/clear round/oval spaces) and mild fibrosis (green). The hepatocytes stain red. Macrovesicular steatosis is lipid accumulation that is so large it distorts the cell\'s nucleus (Photo courtesy of Wikimedia Commons).
The common liver disorder non-alcoholic fatty liver disease (NAFLD) has been found to share a genetic linkage with Chanarin-Dorfman syndrome, a rare skin condition.

NAFLD, which affects more than one-third of the world’s population, is characterized by excessive fat build-up in the liver due to causes other than alcohol use. There are two types of NAFLD: non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH). Non-alcoholic fatty liver usually does not progress to liver damage or NASH. NASH includes both a fatty liver and liver inflammation. It may lead to complications such as cirrhosis, liver cancer, liver failure, or cardiovascular disease. NAFLD displays a strong genetic component, and inherited forms of have been suspected. However, the molecular mechanisms of hereditary NAFLD have not been described.

Investigators at Thomas Jefferson University (Philadelphia, PA, USA) identified a gene, that when mutated, causes NAFLD. This finding was made while the investigators were studying Chanarin-Dorfman syndrome, a severe but rare skin disorder, in several families from Iran. Sufferers of Chanarin-Dorfman syndrome develop dry, reddish, and scaly skin shortly after birth and later on in life acquire abnormally large and fatty livers.

The investigator performed whole-exome or targeted next-generation sequencing on patients from six families who demonstrated autosomal dominant NAFLD. From their results, the investigators described a heritable form of NAFLD and/or dyslipidemia due to monoallelic ABHD5 (abhydrolase domain containing 5) mutations, with complete clinical expression after the fourth decade of life. Mutations in the ABHD5 gene have been associated with Chanarin-Dorfman syndrome, a triglyceride storage disease with impaired long-chain fatty acid oxidation.

The results obtained during the present study came from seven unrelated multiplex families encompassing 39 affected individuals. The prevalence of ABHD5-associated NAFLD was estimated to be one in 1,137 individuals in a normal population.

“Studying a rare, heritable disease such as Chanarin-Dorfman syndrome, can be very helpful in identifying conditions which are much more prevalent, like in the case of non-alcoholic fatty liver disease,” said senior author Dr. Jouni Uitto, professor of dermatology and cutaneous biology at Thomas Jefferson University. “It turns out that if you have one mutated copy of the ABHD5 gene you get the liver disease only, but if you have mutations in both copies then you get the liver disease plus Chanarin-Dorfman syndrome.”

“The link between non-alcoholic fatty liver disease and scaly skin diseases such as Chanarin-Dorfman syndrome highlights the importance of regulated lipid metabolism in skin physiology,” said Dr. Uitto. “In fact, there are several heritable disorders manifesting with dry and scaly skin associated with mutations in genes like ABHD5 that are involved in lipid metabolism. Identification of such genes and specific mutations now form the basis for ongoing studies attempting to develop treatment for these often devastating skin disorders.”

The study was published in the August 2019 issue of the Journal of Hepatology.

Related Links:
Thomas Jefferson University

Gold Member
Troponin T QC
Troponin T Quality Control
New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG
New
Food Allergies IgG
Allerquant 42G ELISA
New
Electroporation System
Gibco CTS Xenon

Print article

Channels

Molecular Diagnostics

view channel
Image: Three newly identified protein biomarkers have the potential to improve diagnostic tools for colorectal cancer (Photo courtesy of Adobe Stock)

New Protein Biomarkers to Improve Diagnostic Tools for Colorectal Cancer

Colorectal cancer is a leading cause of cancer-related deaths globally, and its incidence is expected to rise in the coming decades. This cancer begins when abnormal cells grow uncontrollably in the large... Read more

Microbiology

view channel
Image: The CRISPR-TB Blood Test provides accurate, rapid, and cost-effective diagnosis (Photo courtesy of 123RF)

CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening

Tuberculosis (TB) continues to be a leading cause of global mortality, with 10.6 million new cases and 1.6 million deaths annually. Diagnosing TB remains difficult, with smear microscopy offering only... Read more

Pathology

view channel
Image: The AI tool can search through data and histology images for much more precise information on cancer treatment effectiveness (Photo courtesy of Shutterstock)

AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.