We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Panel Detects Early Signs of Kidney Transplant Rejection

By LabMedica International staff writers
Posted on 12 Aug 2019
Print article
Image: The presence of lymphocytes within the tubular epithelium, attesting to acute cellular rejection of a renal graft (Photo courtesy of Wikimedia Commons).
Image: The presence of lymphocytes within the tubular epithelium, attesting to acute cellular rejection of a renal graft (Photo courtesy of Wikimedia Commons).
A team of European kidney transplantation researchers has developed and validated an mRNA-based gene set found in peripheral blood that can identify patients with symptoms of antibody-based kidney transplant rejection.

Antibody-mediated rejection, a leading cause of kidney transplantation failure, is currently diagnosed by histological assessment of invasive allograft biopsies. Accurate non-invasive biomarkers are not available, and from 10 to 20% of rejections remain undetected, which leads to graft failure, reinitiation of dialysis, and the need for a repeat transplant.

To identify potential rejection biomarkers, investigators at KU Leuven (Belgium) and their collaborators performed a genome-wide study (GWAS) to identify differences in RNA molecules among 117 patients with and without kidney rejection symptoms following transplant. In the second phase of the study, the different molecules of an independent group of 183 patients were processed into a mathematical model. The final biomarker consists of eight RNA molecules that were measured with an RT-PCR technique. In the third phase, the biomarker was validated in 387 patients in four European academic hospitals.

Blood samples for the investigation were prospectively collected from participants in the BIOMARGIN study at time of renal allograft biopsies between June 2011 and August 2016. BIOMARGIN (Limoges, France) was a four-year European collaborative research project that began in March 2013. The consortium brought together 13 complementary partners, including three small and medium enterprises, one technology transfer / management company, five academic laboratories, and four university hospitals from four European Member States (France, Belgium, Germany, and Sweden).

Results obtained during the initial phase of the study served to identify an eight-gene assay (CXCL10, FCGR1A, FCGR1B, GBP1, GBP4, IL15, KLRC1, TIMP1) in blood samples from 49 cases with and 134 cases without antibody-mediated rejection. In the validation cohort, this eight-gene assay discriminated between 41 cases with and 346 cases without antibody-mediated rejection with good diagnostic accuracy. The diagnostic accuracy of the eight-gene assay was retained both at time of stable graft function and of graft dysfunction, within the first year and also later after transplantation.

"Rejection by HLA antibodies often has serious consequences," said senior author Dr. Maarten Naesens, professor of nephrology at KU Leuven. "Traditional tests for assessing the function of transplanted kidneys can often only identify rejection when it is already chronic and irreversible. Thanks to our biomarker, we can detect rejection much earlier and with a simple blood test. Because the test is less invasive, we will be able to test more often than with the current biopsies."

"In principle, our antibody rejection test has been sufficiently validated for commercialization," said Dr. Naesens. "This is the next and necessary step to be able to offer the test to patients. With the test, patients who have no rejection of antibodies will no longer have to undergo a biopsy. The biomarker will also help to detect rejection sooner and will support the search for better medicines against rejection by antibodies."

The eight-gene panel was described in the August 1, 2019, online edition of the journal EbioMedicine.

Related Links:
KU Leuven
BIOMARGIN

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.