We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Saliva Collection Methods Evaluated for Proteome Analysis

By LabMedica International staff writers
Posted on 29 Apr 2013
Print article
The suitability of three different whole-saliva collection approaches for subsequent proteome analyses has been compared.

The saliva was obtained by passive drooling, cotton swabs and paraffin gums allowing similar coverage of the whole saliva proteome, but the specific proteins observed depended on the collection approach.

Scientists at the University Medicine Greifswald (Germany) collected saliva from nine healthy volunteers, four women and five men, whose mean age was 28 years. Subjects had to be free of fever, without a cold, and maintained good oral hygiene. Immediately, after saliva collection, a Proteinase Inhibitor Cocktail (Sigma Aldrich; St. Louis, MO, USA) was added and saliva collection by the three methods was performed on three consecutive days.

Stimulated Salivette Saliva was collected by Salivette with cotton swabs (Sarstedt; Nümbrecht, Germany). For the stimulated paraffin gum study, volunteers were asked to chew for one minute using commercially available paraffin gum (Ivoclar Vivadent; Schaan, Lichtenstein). Afterwards the fluid was collected in a 15 mL falcon tube. A 50 mL falcon tube was also used to collect for one minute the passive unstimulated drooled saliva from the volunteers. The protein lysates from the saliva samples were analyzed by shotgun liquid chromatography–mass spectrometry. The amount and concentration of the protein as well as protein profiling data of whole saliva were comparatively analyzed.

Samples collected using paraffin gum showed the highest saliva volume at 4.1 ± 1.5 mL, followed by Salivette collection at 1.8 ± 0.4 mL and drooling at 1.0 ± 0.4 mL. Saliva protein concentrations with a mean of 1,145 μg/mL showed no significant differences between the three sampling schemes. Each collection approach facilitated the identification of about 160 proteins with more than two distinct peptides per subject, but collection-method dependent variations in protein composition were observed.

The authors concluded that the three collection methods allows similar coverage of the whole saliva proteome, but the specific proteins observed depended on the collection approach. Therefore, only one type of collection device should be used for quantitative proteome analysis, especially when performing large-scale cross-sectional or multicentric studies. The study was published on April 18, 2013, in the journal Clinica Chimica Acta.

Related Links:

University Medicine Greifswald
Sigma Aldrich
Sarstedt


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.