We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Metabolomic Study Reveals Early Diagnostic Marker for Type II Diabetes

By LabMedica International staff writers
Posted on 30 Sep 2013
Print article
The metabolite 2-aminoadipic acid (2-AAA) has been identified as a biomarker that can predict risk of developing type II diabetes up to 10 years before onset of the disease.

Investigators at Vanderbilt University (Nashville, TN, USA) and their colleagues at Harvard Medical School (Boston, MA, USA) employed a liquid chromatography–tandem mass spectrometry (LC-MS/MS) metabolomics platform that analyzed intermediary organic acids, purines, pyrimidines, and other compounds. Metabolomics is the study of chemical processes involving metabolites, while the metabolome represents the collection of all metabolites in a biological cell, tissue, organ, or organism that are the end products of cellular processes.

For this study, the investigators performed a nested case-control study of 188 individuals who developed type II diabetes and 188 matched controls from a group of 2,422 nondiabetic participants followed for 12 years in the Framingham Heart Study.

Results revealed that 2-AAA was the metabolite most strongly associated with the risk of developing type II diabetes. Individuals with 2-AAA concentrations in the top quartile had greater than a four-fold risk of developing diabetes. Levels of 2-AAA were not well correlated with other metabolite biomarkers of diabetes, such as branched chain amino acids and aromatic amino acids, suggesting they report on a distinct physiological pathway.

In experimental studies, administration of 2-AAA lowered fasting plasma glucose levels in mice fed both standard chow and high-fat diets. Furthermore, 2-AAA treatment enhanced insulin secretion from a pancreatic beta-cell line as well as murine and human islets.

“From the baseline blood samples, we identified a novel biomarker, 2-aminoadipic acid (2-AAA) that was higher in people who went on to develop diabetes than in those who did not,” said first author Dr. Thomas J. Wang, professor of cardiology at Vanderbilt University. “That information was above and beyond knowing their blood sugar at baseline, knowing whether they were obese, or had other characteristics that put them at risk. 2-AAA appears to be more than a passive marker. It actually seems to play a role in glucose metabolism. It is still a bit early to understand the biological implications of that role, but these experimental data are intriguing in that this molecule could be contributing in some manner to the development of the disease itself.”

“Diabetes is common and the prevalence will only rise in coming years fueled by the rise of obesity. Understanding why diabetes occurs and how it might be prevented is a very intense area of investigation because of the serious consequences of having the disease,” said Dr. Wang. “It is certainly a focus of many research groups to understand how we might develop strategies to detect diabetes risk at an earlier stage and intervene.”

The study was published in the September 16, 2013, online edition of the Journal of Clinical Investigation.

Related Links:
Vanderbilt University
Harvard Medical School


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.