We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Highly Sensitive Detection Method Monitors HDL Kinetics

By LabMedica International staff writers
Posted on 28 Apr 2016
Print article
Image: The Q Exactive hybrid quadrupole orbitrap mass spectrometer (Photo courtesy of Thermo Fisher Scientific).
Image: The Q Exactive hybrid quadrupole orbitrap mass spectrometer (Photo courtesy of Thermo Fisher Scientific).
High-density lipoprotein (HDL) is often referred to as good cholesterol, and high levels of HDL are associated with lower risk of cardiovascular disease, but many clinical outcome trials for drugs that raise HDL levels have failed to show significant benefits for trial participants.

Current HDL detection methods usually measure only total HDL cholesterol, but a more sensitive detection method could allow investigators to measure the subfractions of HDL, and more precisely pinpoint which of these subfractions should be raised to help protect against cardiovascular events.

Scientists at Brigham and Women's Hospital (Boston, MA, USA) and their colleagues studied three participants, two female and one male who were ages 25, 33, and 49 years old; were overweight or obese with a body mass index (BMI) of 26, 31, and 31 kg/m2; and had low HDL-C levels of 48, 37, and 24 mg/dl, respectively. The three participants ate a controlled, high-unsaturated-fat diet for 32 days, 28 days prior to the kinetic study, and four days during the kinetic study.

Total plasma leucine (D3-Leu labeled and endogenous) was isolated from 0.2 mL of plasma from different time points and measured using a Gas Chromatograph/ Mass Spectrometer (GC/MS) 6890 GC, 5973 MS, (Agilent Technologies, Santa Clara, CA, USA). HDL was separated by size using nondenaturing polyacrylamide gel electrophoresis (ND-PAGE). Spectral counting was used for the relative quantification of the apolipoproteins. Peptide samples were analyzed with the Q Exactive mass spectrometer fronted with a Nanospray FLEX ion source, and coupled to an Easy-nLC1000 High performance liquid chromatography (HPLC) pump (Thermo Fisher Scientific, Bremen, Germany).

The investigators were able to identify 58 proteins in HDL that were shared among three participants. They followed up on seven of these proteins, monitoring their kinetics to better understand apolipoprotein metabolism and the formation of HDL particles. Their results suggest that the traditional view of the role of HDL in reverse cholesterol transport may oversimplify the roles and contributions of various components of HDL.

The authors concluded that their study demonstrated the feasibility of closer monitoring of HDL kinetics. They believe that establishing new, high-resolution methods that can monitor HDL kinetics is critical to examine the desired effects of new drugs. This approach not only revealed novel evidence for the formation of HDL particles, but also found that each HDL subfraction has a unique proteome, which may help to discover new therapeutic targets. The study was published on April 1, 2016, in Journal of Lipid Research.

Related Links:
Brigham and Women's Hospital
Agilent Technologies
Thermo Fisher Scientific
Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.