We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cancer Risk Assessed by Circulating Protein Biomarker Panel

By LabMedica International staff writers
Posted on 10 Aug 2018
Print article
Image: A photomicrograph of squamous-cell carcinoma, a type of non-small-cell carcinoma of the lung, from a fine needle aspiration specimen (Photo courtesy of Nephron).
Image: A photomicrograph of squamous-cell carcinoma, a type of non-small-cell carcinoma of the lung, from a fine needle aspiration specimen (Photo courtesy of Nephron).
The question has been asked whether a risk prediction model based on circulating protein biomarkers improve on a traditional risk prediction model for lung cancer and the current USA screening criteria.

Current screening criteria for lung cancer risk assessments often miss a large proportion of cases. It has recently been suggested that a panel of specific circulating protein biomarkers may improve lung cancer risk assessment and may be used to define eligibility for computed tomography screening.

A large international consortium of scientists led by International Agency for Research on Cancer (Lyon, France) collected prediagnostic samples from 108 ever-smoking patients with lung cancer diagnosed within one year after blood collection and samples from 216 smoking-matched controls from the Carotene and Retinol Efficacy Trial (CARET) cohort. The samples were used to develop a biomarker risk score based on four proteins (cancer antigen 125 [CA125], carcinoembryonic antigen [CEA], cytokeratin-19 fragment [CYFRA 21-1], and the precursor form of surfactant protein B [Pro-SFTPB]). The biomarker score was subsequently validated blindly using absolute risk estimates among 63 ever-smoking patients with lung cancer diagnosed within one year after blood collection and 90 matched controls from two large European population-based cohorts.

In the validation study of 63 ever-smoking patients with lung cancer and 90 matched controls (age, 57.7 ± 8.7 years; 68.6% men) from the cohorts, an integrated risk prediction model that combined smoking exposure with the biomarker score yielded an AUC of 0.83 (95% CI, 0.76-0.90) compared with 0.73 (95% CI, 0.64-0.82) for a model based on smoking exposure alone. With an overall specificity of 0.83, based on the US Preventive Services Task Force (USPSTF) screening criteria, the sensitivity of the integrated risk model was 0.63 compared to 0.43 for the smoking model. Additionally, at an overall sensitivity of 0.41 the integrated risk model yielded a specificity of 0.95 compared with 0.86 for the smoking model, based on the USPSTF screening criteria.

The authors concluded that these improvements in sensitivity and specificity were consistently observed across each evaluated stratum. Their findings also indicated that the improvement in discrimination afforded by the biomarker score is more modest beyond the initial year after blood draw, which suggests that an annual biomarker test may be necessary in a screening program. The study was published on July 12, 2018, in the journal JAMA Oncology.

Related Links:
International Agency for Research on Cancer

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.