We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New Technique Identifies Potential False Positive COVID-19 Results from RT-PCR Tests

By LabMedica International staff writers
Posted on 23 Nov 2021
Print article
Illustration
Illustration

Researchers have developed and tested a process to identify potential false-positive COVID-19 results.

The method, developed and tested by researchers at the University of Missouri School of Medicine (Columbia, MO, USA), could help other laboratories prevent unnecessary quarantining and repeated testing of people who are not actually infected.

COVID-19 testing is an important tool for managing the virus during the pandemic, and reverse transcriptase polymerase chain reaction (RT-PCR) testing is the most widely used method. But while this type of test is considered reliable, it is associated with a small number of false positive results, most easily recognized in asymptomatic, non-exposed patients. To help ensure the accuracy of positive tests, the researchers have developed a protocol for repeat testing of all positive results involving asymptomatic and unexposed patients, and in all cases in which a specimen with a positive result was located in a testing well next to another specimen with a high virus load.

The team of researchers implemented the quality control protocol in September 2020. Over an eight-week period, 24,717 RT-PCR tests were performed. Of those, 6,251 came from asymptomatic patients. In that group, 288 specimens initially returned a positive result. A second test revealed 20 of these to be false positives.

“False positive diagnoses have important implications for patient management,” said Lester Layfield, MD, professor of pathology and anatomical sciences and director of the Molecular Diagnostics Laboratory. “False positives may lead to inappropriate quarantine, delay of other necessary medical treatment or transfer to a COVID-19 ward.”

“Retesting of positive results from asymptomatic individuals revealed some technologist errors but also contamination from positive specimens in adjacent specimen wells,” added Layfield. “This study should alert the laboratory testing community of the possibility of false positive COVID-19 tests.”

Related Links:
University of Missouri School of Medicine 

Gold Member
SARS-CoV-2 RT-PCR Assay
Reliance SARS-CoV-2 RT-PCR Assay Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Thermal Cycler
Axygen MaxyGene II
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.