We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New Biomarker Can Predict COVID-19 Severity by Means of a Blood Test

By LabMedica International staff writers
Posted on 07 Dec 2021
Print article
Illustration
Illustration

Biomedical scientists have found a new marker in the blood of COVID-19 patients that furnishes insights into the course and development of the disease and could lead to better diagnoses.

Researchers at the Ludwig Maximilian University of Munich (LMU; Munich, Germany) have reported about the role of phosphatidylserine in COVID-19, a molecule normally found in cell walls that could be significant for pathophysiological mechanisms relating to the immune system and blood coagulation. And potentially it could also be suitable as a new biomarker for predicting the severity of the disease by means of a blood test.

Many people infected with SARS-CoV-2 are either asymptomatic or feel only slightly unwell. Nevertheless, the infections can produce the clinical picture of COVID-19, including inflammations and changes to blood coagulation. Moreover, doctors have observed disorders of the immune system in COVID-19 patients, with low lymphocyte counts in the blood. The LMU researchers had previously developed a test that detects phosphatidylserine in or on blood cells. In the present study, the researchers investigated blood samples from 54 patients who had COVID-19 to various degrees of severity. In addition, the researchers analyzed samples from 35 healthy and 12 recovered donors. The focus of the study was on peripheral blood mononuclear cells such as lymphocytes and monocytes.

All immune cells were analyzed using the phosphatidylserine test and separated by means of flow cytometry, a physical technique. The instrument created microscopic images of each cell simultaneously. On the basis of the image files, the researchers were able to recognize whether phosphatidylserine was present - and where it was located. This revealed that the immune cells did not carry the signal inside them. The measurements also revealed a connection between the severity of COVID-19 and phosphatidylserine. Elevated values during the active phase of COVID-19 correlated strongly with the severity of the disease and could ultimately lead to better diagnoses. The system is still designed for research laboratories, as very few hospitals have flow cytometers with imaging capabilities. Therefore, the LMU researchers now want to determine whether ordinary flow cytometers - of the kind that many hospitals have in their laboratories - are also suitable for measurement.

“Lymphocytes from the blood of COVID-19 patients were surface-loaded with fragments of blood platelets, which we were able to demonstrate based on the signal,” said Prof. Thomas Brocker, who researches at LMU’s Biomedical Center Munich. Blood platelets in turn accelerate coagulation. “And so phosphatidylserine could function as a signal transducer for dysregulated inflammatory processes or coagulation disorders in patients with COVID-19; that is to say, it could trigger typical COVID-19 changes.”

“As a marker, phosphatidylserine outperformed established lab markers for inflammatory processes in the body, for leukocytes, and for coagulation factors that are currently used for the clinical evaluation of COVID-19,” added Brocker.

Related Links:
Ludwig Maximilian University of Munich 

Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
3-Position Stirrer
ST-200 and SHP-200 Series
New
Hepatitis B Test
OnSite HBsAg Rapid Test

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: New insights into preterm infant immunity could inform care (Photo courtesy of 123RF)

New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood

Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.