We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Light-Activated Enzymes Could Significantly Improve PCR-Based COVID-19 Diagnostic Tests

By LabMedica International staff writers
Posted on 16 Dec 2021
Print article
Image: Light-Activated Enzymes Could Significantly Improve PCR-Based COVID-19 Diagnostic Tests (Photo courtesy of Vera/LMU)
Image: Light-Activated Enzymes Could Significantly Improve PCR-Based COVID-19 Diagnostic Tests (Photo courtesy of Vera/LMU)

A new approach using enzymes triggered by light pulses could help to significantly improve COVID-19 diagnostic tests based on PCR.

The approach developed by biochemists at the Ludwig Maximilian University of Munich (LMU; Munich, Germany) is expected to help produce better enzymes for biotechnological and diagnostics use.

DNA polymerases and other enzymes that modify DNA are essential tools in biotechnology and diagnostics. They are the key component for COVID-19 diagnostics by PCR. As useful as they are, DNA processing enzymes often have important flaws. Some of them display significant activity during the preparation of the samples, while others have nasty secondary activities. Both can lead to loss of specificity and sensitivity, which has to be avoided in a diagnostic test.

The trick is to block any type of enzymatic activity until the assay starts. For diagnostics tests based on PCR, such as the above mentioned test for COVID-19, the solution is the development of a hot-start enzyme, which shows no activity until a high activation temperature is reached. The main drawback of these hot-start approaches is that they cannot be used for enzymes that are damaged by heat.

The researchers found a way around these problems by designing light-start enzymes. Their light-start enzymes are blocked until a pulse of UV light reactivates them. In their approach, the researchers bound a piece of DNA to the enzyme itself, which over-compete any other enzymatic substrates rendering the enzyme effectively inactive (including their secondary activities). The light pulse is used to cut the DNA attached to the enzyme resulting in a 100% active enzyme. The main advantage is that the mechanism should work for a broad range of DNA biding enzymes regardless of their specific way of action.

To prove their point the researchers produced four light-activatable versions of different DNA processing enzymes. Among them was the so called Phi29 DNA polymerase, an enzyme broadly used to amplify whole genomes but too heat-sensitive to be adapted to hot-start methods. Moreover, the team showed light-start PCR and proved that their DNA polymerases were as good or better compared to commercial hot-start enzymes for PCR.

“Light-controlled enzymes have been around for quite a while, but what makes our approach unique is that it can be applied to virtually any DNA processing enzyme. In the past you always needed very detailed information on how your enzyme works and you were never sure that you would come with a smart way to block the enzyme and reactivate it with light,” said LMU-biochemist Andrés Vera who led the project.

“This is definitely going to help to produce better enzymes for biotechnological and diagnostics use. Besides, current real-time PCR machines already incorporate light sources and they could be easily modified to bring these enzymes to the market anytime soon,” added Prof. Philip Tinnefeld at the Department of Chemistry of LMU.

Related Links:
Ludwig Maximilian University of Munich

Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Automated Blood Typing System
IH-500 NEXT
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.