We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Isolation of Pure Form of Coronavirus Nucleoprotein to Help Create More Accurate COVID-19 Antibody Tests

By LabMedica International staff writers
Posted on 09 Feb 2022
Print article
Illustration
Illustration

Biologists have isolated the coronavirus nucleoprotein in its pure form to improve the accuracy and sensitivity of COVID-19 antibody tests.

Scientists from Research Center of Biotechnology RAS (Moscow, Russian Federation) have demonstrated that at least two different methods of directed RNA removal are required for obtaining SARS-CoV-2 nucleoprotein, completely free from any RNA admixtures. Such preparation helps to determine the presence of antibodies to SARS-CoV-2 with significantly higher sensitivity.

The SARS-CoV-2 nucleoprotein is the main protein in viral particles. It folds the RNA of the virus into a compact structure. This is needed to transfer the hereditary material to the "next generations" of virions (viral particles) before they are separated from the infected cell. COVID-19 patients usually develop antibodies (immunity proteins that are specifically connected to a specific fragment of the "enemy" protein) to the SARS-CoV-2 nucleoprotein, even if the infection was asymptomatic.

But people inoculated with mRNA vaccines and adenovirus vaccines such as Sputnik V or ChAdOx1 (AstraZeneca) do not develop antibodies to the nucleoprotein. The reason is that these vaccines do not code nucleoprotein, but rather S-protein, "spikes" that allow the virus to attach to the human cell and infect it. The immunity of people who had contracted the virus, unlike vaccinated people, encounters all the proteins of the virus and develops all forms of antibodies to nucleoprotein too.

To create more accurate antibody tests, it is necessary to isolate the pure form of protein to which the antibodies are specific. The test works because the protein finds "its" antibody and binds to it. In the case of a nucleoprotein, however, there are many obstacles for binding of antibodies. Part of the protein's surface is closed by bound RNA, and another part is inaccessible because nucleoproteins form huge supramolecular structures. Since the nucleoprotein "in the line of duty" binds to RNA, separating one from the other is a complicated process.

"With nucleoprotein antibody tests, it is possible to know exactly whether a vaccinated person has been infected with SARS-CoV-2. Tests for antibodies to the S-protein do not provide this clear information," said Ivan I. Vorobiev, Doctor of Biological Sciences, one of the authors of the study and Head of the laboratory of Mammals Cells Bioengineering of the Research Center of Biotechnology RAS. "Apparently, the omicron variant can easily infect vaccinated persons, but it rarely re-infects those who have already been infected and very rarely infects those who have been infected and vaccinated afterward. There are also commercial tests for antibodies to the SARS-CoV-2 virus nucleoprotein. Unfortunately, some of them give plenty of false positives, while others, with low sensitivity, give many false negatives."

Related Links:
Research Center of Biotechnology RAS
 

Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Strips
11 Parameter Urine Strips
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.