We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Seegene

Seegene, Inc. is a developer of multiplex molecular technologies and multiplex clinical molecular diagnostics for inf... read more Featured Products: More products

Download Mobile App





Easier, Faster Assay Enables Many More Laboratories to Identify COVID-19 Variants

By LabMedica International staff writers
Posted on 04 Apr 2022
Print article
Image: Novaplex SARS-CoV-2 Variant I, II, and IV real-time PCR assays (Photo courtesy of Seegene, Inc.)
Image: Novaplex SARS-CoV-2 Variant I, II, and IV real-time PCR assays (Photo courtesy of Seegene, Inc.)

Using a commercially available test and simplified process, any laboratory that can run a real-time PCR assay can detect known SARS-CoV-2 variants in patient samples, according to a new study.

The study by investigators at the University of Texas Medical Branch (Galveston, TX, USA) found that Seegene, Inc.’s (Seoul, Korea) Novaplex SARS-CoV-2 Variant I, II, and IV real-time PCR assays can reliably detect SARS-CoV-2 in patient samples and identify known variants of interest and concern. Results from the PCR assays were comparable to those from the “gold standard” spike gene Sanger sequencing method. Researchers were also able to successfully streamline testing and reduce cost and turnaround time by processing samples without extracting RNA for testing.

The I, II, and IV assays from Seegene are designed to detect genetic mutations associated with the alpha, beta, delta, and epsilon variants of SARS-CoV-2. At the time of the study, the omicron variant had not yet emerged. RNA was extracted from each sample for testing by the Novaplex RT-PCR assays and Sanger sequencing. The samples were also directly tested without extraction of RNA by the Novaplex assays. Of the 156 samples processed with RNA extraction, the RT-PCR assays identified 109 variants. The results were 100% in agreement with the Sanger sequencing test. The RNA extraction-free method was 91.7% as sensitive as the traditional RNA extraction method. In samples with a lower viral load, the extraction-free RT-PCR assays did not detect some mutations, presumably because of lower nucleic acid concentrations in the original samples.

RT-PCR assays can be tailored to include additional representative genes as different variants emerge and allow for more accessible variant detection and monitoring to inform public health and treatment decisions. While not included in this study, assays are now available to identify omicron-specific mutations.

“Real-time PCR (RT-PCR) methodology for variant detection is accessible, rapid, simpler, and accurate compared to traditional sequencing,” said lead investigator Ping Ren, PhD, Department of Pathology, University of Texas Medical Branch. “Combining an extraction-free processing method with RT-PCR technology can help laboratories without sequencing capabilities track circulating variants and investigate variant-dependent effects on treatment efficacy and disease severity.”

“Determining the SARS-CoV-2 variant in individual patient samples can help guide treatment since some variants are more resistant to current treatment regimens,” Dr. Ren observed. “However, the potential impact extends beyond individual patients and into the public health realm. It is important to track variant spread as part of public health surveillance because of variant-dependent transmission, disease severity, and treatment decisions.

“A major limiting factor for molecular SARS-CoV-2 assays is the shortage of RNA extraction reagents,” explained co-lead author Marisa C. Nielsen, PhD, Department of Pathology, The University of Texas Medical Branch. “Conventional extraction remains a time-consuming aspect of molecular diagnosis of SARS-CoV-2. Recent CDC guidance recommends sequencing only for cases with a cycle threshold (Ct) value lower than 28, which indicates a higher viral load, because sequencing is less reliable in samples with lower viral loads.”

“Although lower sensitivity was observed with the extraction-free method, it still represents a viable alternative,” Dr. Nielsen added. “Spike sequencing is still necessary for detecting new variants.”

Related Links:
Seegene, Inc. 
University of Texas Medical Branch 

Gold Member
COVID-19 Rapid Test
AQ+ COVID-19 Ag Rapid Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.