We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Molecular Blood Group Typing Technique Developed

By LabMedica International staff writers
Posted on 24 Apr 2014
Print article
Image: The NanoVue spectrophotometer (Photo courtesy of GE Healthcare).
Image: The NanoVue spectrophotometer (Photo courtesy of GE Healthcare).
A new system for molecular blood group typing has been designed that offers blood banks the possibility of extensive screening of blood donors at a relatively low cost.

Although blood transfusion is generally safe, occasionally alloimmunization, which is when an antibody is formed in response to an antigen that is not present on a person's own red blood cells (RBCs), remains a dreaded complication, particularly in patients with sickle cell diseases.

Scientists at the Etablissement Français du Sang Pyrénées Méditerranée (La Plaine, Saint-Denis, France) developed a new flexible DNA microarray platform for molecular blood group typing. This includes two robotic workstations that allow processing from blood sample to the genotype. A pilot study shows promising results for responding to blood donor laboratories' requirements for simple, low-cost screening.

A total of 1,132 anticoagulated blood samples were from random donors, mostly Caucasian, who were extensively phenotyped using standard serologic hemagglutination techniques. One hundred seventy-two samples were used to determine scoring criteria for predicting phenotype. The remaining 960 samples were used for validation of the 96-well DNA microarray system.

Genomic DNA extraction from whole blood samples was performed using a MagNA Pure 96 system (Roche Diagnostics, Rotkreuz, Switzerland) and Roche’s Viral NA Small Volume Kit in a 96-well microarray plate. After extraction, DNA was eluted and quantified using a NanoVue spectrophotometer (GE Healthcare; Little Chalfont, UK).

A total of 938 samples were considered as valid and assigned genotypes based on the scoring criteria determined for the eight single-nucleotide polymorphism (SNPs). Phenotypes predicted from genotypes were compared with those obtained by serologic typing. The concordance rate between the DNA-based and standard hemagglutination assays was high for all four blood group systems. Only three predicted phenotypes that involved the KEL, JK, and MNS systems were discordant. This version allows simultaneous multiplex assay of up to 96 samples in a single reaction run, but the system allows other DNA microarray formats with a lower number of wells to be easily adapted and processed on this platform.

Jean-Charles Brès, PhD, The lead investigator, said, “The availability of high throughput DNA-based blood-group genotyping would be a great boon for transfusion medicine. In addition to providing more fully antigen-matched RBCs and allowing better identification of rare donor blood types, this technology will reduce adverse reactions and decrease the relative cost of analysis.” The cost would be less than USD 2.60 per SNP. The study was published in the May 2014 issue of the Journal of Molecular Diagnostics.

Related Links:

Etablissement Français du Sang Pyrénées Méditerranée
Roche Diagnostics
GE Healthcare


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.