Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Processing Methods Affect Microparticles Linked To Transfusion Reactions

By LabMedica International staff writers
Posted on 29 Apr 2016
Specific red blood cell manufacturing methods may be less damaging to cells than others and knowledge of this could help reduce adverse reactions in transfusion recipients and may impact the future of how blood is collected around the world.

Scientists have looked at the levels of microparticles and mitochondrial DNA (mtDNA) present in blood that can indicate cellular damage. Studying red blood cell units manufactured using nine different processes; they observed clear differences in the extent of damage across the nine methods.

A team of scientists led by those at the Blood Systems Research Institute (San Francisco, CA, USA) prepared 87 red cell concentrates (RCCs) using nine different methods (six to 15 units/method), including three apheresis, five whole blood (WB)-derived leucoreduced (LR) and one WB-derived non-LR method. On storage days five and 42, levels of mtDNA were measured by polymerase chain reaction (PCR), and number and cell of origin of extracellular vesicle (EVs) were studies by flow cytometry and were assessed in RCC supernatants.

Red blood cell (RBC) and residual platelet (rPLT) counts were measured using a Coulter AcT 8 hematology analyzer (Beckman Coulter Inc., Fullerton, CA, USA). Residual white blood cell (WBC) counts were measured by flow cytometry with the LeukoSure WBC enumeration kit. MtDNA quantification was implemented after DNA extraction and real-time PCR were performed on a LightCycler 480 II sequence detection system (Roche, Basel, Switzerland). EVs quantification were assessed by flow cytometry, using a 3-laser (blue 488 nm, violet 405 nm, and red 633 nm) LSR II benchtop flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA).

The team found that here was a 100-fold difference in mtDNA levels among methods, with highest levels in non-LR, followed by MCS+ and Trima apheresis RCCs. There was a 10-fold difference in EV levels among methods. RBC-derived CD235a+ EVs were found in fresh RCCs and increased in most during storage. Platelet-derived CD41a+ EVs were highest in non-LR and Trima RCCs and did not change during storage. WBC-derived EVs were low in most RCCs; CD14+ EVs increased in several RCCs during storage.

Sonia Bakkour, PhD, the lead investigator said, “Our study showed that those molecular patterns are present and that their levels and composition are different based on the red cell manufacturing process, that is the process and materials used to collect or prepare red cells for transfusion. This tells us that some manufacturing processes cause less damage to the red blood cells than others.” The study was published on April 11, 2016, in the journal Vox Sanguinis.

Related Links:
Blood Systems Research Institute
Beckman Coulter
Roche
Becton Dickinson

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.