We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Peripheral Blood Smears Still Need Evaluation

By LabMedica International staff writers
Posted on 22 Jun 2017
Print article
Image: A white blood cell among red blood cells (Photo courtesy of HealthTap).
Image: A white blood cell among red blood cells (Photo courtesy of HealthTap).
When the first automated hematology analyzers appeared in clinical laboratories in the 1960s, they ushered in a welcomed workflow change for bench technologists. These automated analyzers replaced hemocytometers, though the need for differential counting remained.

This evolution in hematology workflows has continued to this day, with automated instruments performing ever more cellular analysis, resulting in more focused roles for technologists and pathologists. However, certain characteristics of peripheral blood morphology still do not lend themselves easily to evaluation by automated analyzers.

A clinical associate professor at the University of Florida (Gainesville, FL, USA) has written that one limitation that has remained constant from the earliest hematology analyzers to today’s cutting-edge flow cytometers is that a single cell still must pass through an aperture for analysis. In order to maintain laminar flow, the cell must also be sphered, which is most often accomplished with a proprietary sphering reagent. The exact classification of abnormally shaped red cells, for example, sickle cells, target cells, and schistocytes, still requires morphologic review of stained slides.

In addition red cell and white cell inclusions, particularly infectious organisms such as malaria or histoplasmosis, can be seen in stained blood smears but are not routinely detected by most automated hematology analyzers. Because of the extensive morphologic variability of many circulating hematologic malignancies, automated systems cannot precisely characterize these cells. Most analyzers, however, aid in characterizing these cells by pre-classifying them as abnormal (through large unstained cell classification or flagging) and prompting manual review of slides.

Analyzers that have digital morphology capabilities, such as the CellaVision or the Bloodhound systems, are inaugurating a new era of cellular analysis. As these instruments’ algorithms continue to be refined, this technology might evolve from a pre-classifier method to a more enhanced and robust method for precise characterization. The accuracy of an automated differential count depends on the analytical system used. However, given that most automated counters literally characterize thousands of white cells for each analysis, the classic 100-cell manual differential count in comparison falls short when it comes to precision. Sherri D. Flax, MD, published her article on June 1, 2017, in the journal Clinical Laboratory News.

Related Links:
University of Florida

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.