Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Multiple Myeloma Subtypes Linked to Patient Ancestry

By LabMedica International staff writers
Posted on 23 Oct 2018
Multiple myeloma (MM) is two- to three-fold more common in African Americans compared to European Americans. This striking disparity, one of the highest of any cancer, may be due to underlying genetic predisposition between these groups.

African Americans (AAs) have a 2–3-fold higher prevalence of monoclonal gammopathy of undetermined significance (MGUS) and a similarly higher incidence of MM, along with approximately 4-year younger age of onset compared to European Americans (EAs).

An international team of scientists led by those at the Mayo Clinic (Rochester, MN, USA) performed cytogenetic analyses, genotyping, and genetic ancestry profiling on samples from 881 individuals with monoclonal gammopathy, a set of blood plasma cell neoplasms ranging from non-cancerous conditions that increase myeloma risk, such as MGUS to multiple myeloma itself. Patients were identified who had an abnormal plasma cell proliferative disorder fluorescence in situ hybridization (FISH) result and a concurrent conventional G-banded chromosome evaluation as part of routine clinical testing.

DNA was isolated from fixed cell pellets from residual chromosome studies that yielded normal results using the DNeasy Blood and Tissue Kit. DNA was quantitated using a Qubit Fluorometric Quantitation Instrument and 100 ng of DNA (5 ng/μL) was used for genotyping on a 96-well Axiom array, the Precision Medicine Research Array (PMRA).

The scientists estimated that the risk of developing one of three multiple myeloma subtypes, marked by the so-called t(11;14), t(14;16), and t(14;20) translocations, affecting an immunoglobulin heavy chain gene on chromosome 14, jumped by roughly 6% for each 10% increase in African ancestry. Compared to 235 individuals with less than 0.1% African ancestry according to their genomes, the individuals with at least 80% African ancestry also appeared less likely to develop multiple myelomas marked by trisomies and specific chromosome 13 alterations.

The authors concluded that future studies will include enlarging their 80% or greater African ancestry cohort and increasing the granularity of their studies with regards to specific regions within Africa. Understanding the cause of health disparities in monoclonal gammopathies has the potential to provide previously unrecognized interventions. The study was published on October 10, 2018, in the Blood Cancer Journal.

Related Links:
Mayo Clinic


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Auto Clinical Chemistry Analyzer
cobas c 703
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.