We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanoparticle System Captures Heart-Disease Biomarker From Blood

By LabMedica International staff writers
Posted on 20 Aug 2020
Print article
The TriVersa NanoMate LESA uses chip-based electrospray ionization technology that combines the benefits of liquid chromatography, mass spectrometry, chip-based infusion, fraction collection, and direct surface analysis into one integrated ion source platform (Photo courtesy of Advion BioSciences).
The TriVersa NanoMate LESA uses chip-based electrospray ionization technology that combines the benefits of liquid chromatography, mass spectrometry, chip-based infusion, fraction collection, and direct surface analysis into one integrated ion source platform (Photo courtesy of Advion BioSciences).
Physicians currently use an antibody-based test called enzyme-linked immunosorbent assay (ELISA) to help diagnose heart attacks based on elevated levels of cardiac troponin I (cTnI) in the patient's blood sample. While the ELISA test is sensitive, patients can have high levels of cTnI in the blood without having heart disease, which can lead to expensive and unnecessary treatments for patients.

Measuring low-concentration proteins in the blood like cTnI is a classic needle-in-a-haystack problem. Rare, meaningful biomarkers of disease are completely overwhelmed by common and diagnostically impractical proteins in the blood. Current methods use antibodies to enrich and capture proteins in a complex sample to identify and quantify proteins. But antibodies are expensive, have batch-to-batch variations, and can generate inconsistent results.

Chemists at the University of Wisconsin-Madison (Madison, WI, USA) designed nanoparticles of magnetite, a magnetic form of iron oxide, and linked it to a peptide of 13 amino acids long designed to specifically bind to cTnI. The peptide latches onto cTnI in a blood sample, and the nanoparticles can be collected together using a magnet. Nanoparticles and peptides are easily made in the laboratory, making them cheap and consistent.

The team, by using the nanoparticles, was able to effectively enrich cTnI in samples of human heart tissue and blood. Then they used advanced mass spectrometry, which can distinguish different proteins by their mass, to not only get an accurate measurement of cTnI, but also to assess the various modified forms of the protein. Samples were analyzed by direct infusion using a TriVersa NanoMate system (Advion BioSciences, Ithaca, NY, USA) coupled to a solariX XR 12-Tesla Fourier Transform Ion Cyclotron Resonance mass spectrometer (FTICR-MS, Bruker Daltonics, Bremen, Germany).

Like many proteins, cTnI can be modified by the body depending on factors like an underlying disease or changes in the environment. In the case of cTnI, the body adds various numbers of phosphate groups, small molecular tags that might change the function of cTnI. These variations are subtle and hard to track.

Ying Ge, PhD, a Professor of Chemistry and senior author of the study, said, “So we want to use our nanoproteomics system to look into more details at various modified forms of this protein rather than just measuring its concentration. That will help reveal molecular fingerprints of cTnI from each patient for precision medicine. with high-resolution mass spectrometry, We can now 'see' these molecular details of proteins, like the hidden iceberg beneath the surface.” The study was published on August 6, 2020 in the journal Nature Communications.

Related Links:

University of Wisconsin-Madison
Advion BioSciences
Bruker Daltonics
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
H.pylori Test
Humasis H.pylori Card

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.