We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Next Generation Sequencing Finds More Gene Mutations for Leukemia

By LabMedica International staff writers
Posted on 18 Feb 2021
Print article
Image: TruSight Oncology 500 is a next-generation sequencing (NGS) assay that enables in-house comprehensive genomic profiling of tumor samples it accurately measures key current immuno-oncology biomarkers: microsatellite instability (MSI) and tumor mutational burden (TMB) (Photo courtesy of Illumina).
Image: TruSight Oncology 500 is a next-generation sequencing (NGS) assay that enables in-house comprehensive genomic profiling of tumor samples it accurately measures key current immuno-oncology biomarkers: microsatellite instability (MSI) and tumor mutational burden (TMB) (Photo courtesy of Illumina).
Myeloid malignancies are characterized by uncontrolled proliferation and/or defects in differentiation of abnormal myeloid progenitor cells. Myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPNs) are often thought to be precursors to a higher grade myeloid malignancies, namely acute myeloid leukemia (AML).

Many laboratories have used relatively small targeted panels that screen prominent mutation hotspots in less than 50 genes. Although this approach is cost- and time- effective with minimal data analysis and reporting complexity, it yields an incomplete mutational profile, omitting several important known hotspot mutations.

Pathologists at the Medical College of Georgia (Augusta, GA, USA) included 40 patient with myeloid neoplasms samples in a study, clinical information was available on 27 patients. The investigators retrospectively analyzed 61 bone marrow samples. DNA was isolated from bone marrow aspirates using the QIAamp DNA Blood Mini kit (QIAGEN, Hilden, Germany). Nanodrop spectrophotometer was used to analyze the DNA quality with an OD 260/280 value between 1.7 and 2.2 being considered acceptable.

Double stranded DNA was measured using Qubit dsDNA broad range assay kit (Invitrogen, Carlsbad CA, USA) and 120 ng gDNA was used for library preparation. The team evaluated the clinical performance and utility of a comprehensive 523 gene NGS panel (Illumina, San Diego, CA, USA) for screening myeloid neoplasms. The high-throughput comprehensive Next-Generation Sequencing (NGS) panel was validated for single-nucleotide variants (SNVs) and indels/duplications in myeloid neoplasms.

The scientists reported the larger panel identified 880 variants in 292 genes, and only 14.8% of the variants were in genes included in the smaller 54-gene panel currently in use by many laboratories. The remaining 749 variants are not typically assessed in a leukemia diagnosis or detected by the 54-gene panel. When they looked at the information available on those 749 variants in follow up, they found at least 14 of the variants in 10 genes likely could contribute to AML and 96.2% of the patients had at least one of the 14 novel variants. They also found 22 variants in five other genes associated with other tumor types in the vast majority of the patients with AML.

The authors concluded that the comprehensive panel employed in their study, demonstrated its ease of use and clinical utility for myeloid neoplasms. The panel has extensive coverage across the entire genome, for variants significantly beyond those captured on existing NGS platforms for hematological malignancies. The study was originally published on October 19, 2020 in the journal PLOS ONE.


Related Links:
Medical College of Georgia
Qiagen
Invitrogen
Illumina


Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
ELISA System
ABSOL HS DUO
New
UHF RFID Tag and Inlay
AD-321r6/AD-321r6-P

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.