Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Huntington's Disease Protein Quantified in Cerebrospinal Fluid

By LabMedica International staff writers
Posted on 20 Apr 2015
An immunoassay has been able to measure for the first time the build-up of a harmful mutant protein in the nervous system of patients during the progression of Huntington's disease (HD).

This neoteric assay will enable the testing of drugs that aim to lower the production of the pathogenic mutant huntingtin protein that causes the disease, and could be useful in predicting or monitoring the progression of HD. This genetic neurodegenerative disease usually develops in adulthood and causes abnormal involuntary movements, psychiatric symptoms, and dementia. It is caused by a single gene mutation that results in the production of mutant huntingtin protein.

An international team of scientists led by those at the University College London (UK) developed an ultrasensitive single-molecule counting mutant huntingtin protein (mHTT) immunoassay. The assay was used to quantify mHTT levels in cerebrospinal fluid (CSF) samples from individuals bearing the HD mutation and from control individuals in two independent cohorts. CSF and blood samples were collected from 12 individuals in London and 40 in Vancouver.

A single-molecule counting (SMC) immunoassay was used for mutant HTT protein quantification in CSF and plasma. This test was analyzed with the Erenna Immunoassay System (Singulex; Alameda, CA, USA). An antibody specifically against the polyglutamine domain of HTT was developed. Total protein, hemoglobin and tau proteins were also measured. Recombinant human proteins containing the N-terminal sequence of HTT with 548 amino acids (N548) and polyglutamine repeats of different lengths were generated for the study.

The investigators were able to detect mHTT protein in the CSF samples: mHTT was present in the CSF of almost all HTT mutation carriers, but not in that of control volunteers. In the London cohort, they were able to detect 182.5 ± 106.3 femtomolar (fM) mHTT in the CSF of all nine mutation carriers, but not in the CSF of any of the three controls. In the more diverse Vancouver cohort, they detected 289.1 ± 194.6 fM mHTT in the CSFs of 26 of 28 HTT mutation carriers, but not in any of the 10 controls.

Douglas Macdonald, PhD, a senior author of the study, said, “We do not yet have treatments that can slow the progression of Huntington's disease but, when we do, measuring the mutant protein in CSF could guide clinical decisions such as the best time to start a treatment. Measuring the amount of huntingtin may also be an essential biomarker for the upcoming trials of huntingtin-lowering therapeutics.” The study was published on April 6, 2015, in the Journal of Clinical Investigation.

Related Links:

University College London
Singulex 



New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
New
Auto Clinical Chemistry Analyzer
cobas c 703
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.