We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test Predicts Vaccine Immunogenicity

By LabMedica International staff writers
Posted on 09 May 2017
Print article
A blood test early after vaccination can predict whether vaccines based on living, modified viruses have had the desired effect within seven days of vaccination.

A new study on systems analysis of immune responses induced by a highly promising vaccine against Ebola, as a couple of possible vaccines have been proposed, and this can inform and accelerate rational development of other new vaccines based on living viruses.

One of the vaccines, which is based on a recombinant vesicular stomatitis virus expressing the glycoprotein of the Zaire strain of the Ebola virus (VSV-ZEBOV), was recently shown to be extremely effective with 100% efficacy against the lethal Ebola virus disease in studies carried out in Guinea and Sierra Leone.

A large team of international scientists collaborating with those at the Geneva University Hospitals and Faculty of Medicine examined plasma samples from 115 healthy volunteers from Geneva who received low-dose (LD) or high-dose (HD) vaccine or placebo. Fifteen plasma chemokines/cytokines were assessed at baseline and on days 1, 2 to 3, and 7 after injection. Significant increases in monocyte-mediated MCP-1/CCL2, MIP-1β/CCL4, IL-6, TNF-α, IL-1Ra, and IL-10 occurred on day one. The study includes 190 healthy individuals from Africa and Europe.

By longitudinal analysis blood samples retrieved from persons who have received the Ebola vaccine, the team could show that a group of cytokines measured in plasma within seven days of the vaccine injection correlates with antibody responses developed six months later. The cytokine signature was also shown to correlate with vaccine reactogenicity observed in some volunteers. A signature explaining 68% of cytokine/chemokine vaccine-response variability was identified. Its score was higher in HD versus LD vaccinees and was associated positively with vaccine viremia and negatively with cytopenia. It was higher in vaccinees with injection-site pain, fever, myalgia, chills, and headache; higher scores reflected increasing severity. In contrast, HD vaccinees that subsequently developed arthritis had lower day one scores than other HD vaccinees. This signature, which reveals monocytes’ critical role in rVSV-ZEBOV immunogenicity and safety across doses and continents, should prove useful in assessments of other vaccines.

Ali M. Harandi, PhD, a co-author of the study said, “The results can also provide information to discover biomarkers for other vaccines based on living vectors. There are ongoing studies which focus on the discovery of molecular biomarkers of the VSV-ZEBOV vaccine in healthy individuals using omics-based technologies in combination with a systems biology approach.” The study was published on April 12, 2017, in the journal Science Translational Medicine.

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.