We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Biomarkers Provide Diagnostic Tool for AD

By LabMedica International staff writers
Posted on 09 Aug 2017
Print article
Image: The CytoViva hyperspectral imaging system (Photo courtesy of CytoViva).
Image: The CytoViva hyperspectral imaging system (Photo courtesy of CytoViva).
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder that results in the gradual deterioration of specific brain regions that hinders the person’s ability to think, recall memories, learn, and perform daily tasks.

Currently, AD is diagnosed using the “evaluate and eliminate” approach. With this strategy, patient history, physical exams, laboratory tests, imaging scans, and neurophysiological assessments are examined by doctors as a means to diagnose AD and determine its progression.

Scientists at Ohio State University (Columbus, OH, USA) and their colleagues analyzed 34 cerebrospinal fluid (CSF) samples from 24 patients with AD and from 10 healthy individuals serving as controls. They analyzed 30 serum samples from 22 patients with AD and from eight healthy individuals serving as controls. The processed CSF samples were combined with rabbit-derived primary antibodies anti-Aβ(1–42) antibody) and anti-tau) and goat-derived anti-rabbit secondary antibody in immunofluorescence assays.

A CSF sample of 10 μL was dried on a slide glass surface for atomic force microscopy (AFM) nanomechanics characterization. Hyperspectral microscope imaging was used for particle visualization and analysis and using the system, images of micro-/nanoscale structures and micro-/nanoparticles were captured. Coated with gold and anti-Aβ(1–42) antibody, AFM tips were functionalized to specifically detect the Aβ-embedded proteins inside human serum. Serum or anti-Aβ(1–42) antibody was used to coat the substrates, respectively.

The scientists showed that showed that nanoscale physical properties of protein aggregates from the cerebral spinal fluid and blood of patients are altered during AD pathogenesis and that these properties can be used as a new class of “physical biomarkers”. Using a computational algorithm, developed to integrate these biomarkers and cognitive assessments, they demonstrated an approach to impartially diagnose AD and predict its progression.

Mingjun Zhang, PhD, DSc, a professor of Biomechanical Engineering, and lead investigator of the study said, “With a tool like this you may predict how fast this disease will go, and currently we can't do that, we just know everyone is different. Looking at multiple indicators of the disease all at once increases the reliability of the diagnosis and prognosis.” The study was published on July 28, 2017, in the journal Science Advances.

Related Links:
Ohio State University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Lyme Disease Test
Lyme IgG/IgM Rapid Test Cassette
New
Myeloperoxidase Assay
IDK MPO ELISA

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.