We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Images Evaluated for CSF Electrophoresis of IgG Bands

By LabMedica International staff writers
Posted on 02 Jan 2018
Print article
Image: Isoelectric focusing on agarose gel for immunoglobulins: a) Original scanned color image, b) gray scale image (Photo courtesy of the Catholic University of Lille).
Image: Isoelectric focusing on agarose gel for immunoglobulins: a) Original scanned color image, b) gray scale image (Photo courtesy of the Catholic University of Lille).
Multiple sclerosis (MS) involves inflammatory lesions of white matter in the central nervous system (CNS) that spread over time. In MS immune reactions lead to intrathecal synthesis of specific immunoglobulins (IgGs) that can be detected in biological fluid samples both quantitatively and qualitatively by isoelectric focusing of supplementary oligoclonal IgG bands.

The detection of oligoclonal bands (OCBs) in cerebral spinal fluid (CSF) by isoelectric focusing (IEF) is a common diagnostic tool. Chromogenic staining of immunoblots facilitates detection. The higher the concentration of the IgG bands, the greater the intensity of the colors and the more readable the profile, makes interpretation easier.

Scientists at the Faculty of Medicine et de Maieutique (Lille, France) performed IgG isoelectric focusing on agarose gel and immunoblot membrane (10 cm × 8 cm). A simple tool, using the MATLAB application, to facilitate and improve isoelectric focusing profile analysis was evaluated in terms of its sensitivity, repeatability and reproducibility. A comparison between human readers and semi-automatic method was also been performed. IgG concentrations in cerebrospinal fluid generally range from 20 mg/L to 45 mg/L.

The team found that results from the semi-automatic method were found to be equivalent or superior to generally employed laboratory methods. Repeatability analysis for semi-automatic processing yielded coefficients of variation (CVs) in the 3%–7% range, and using a sample with an estimated IgG concentration of 200 mg/L, four bands were still visible after dilution to 5 mg/L, corresponding to band concentrations of 1.1mg/L–1.6 mg/L. They also found that discordances between visual inspection and automatic analysis only appear at threshold levels for interpretation (the gray zone).

The comparison between visual reading and automatic reading was: 24/31 profiles were concordant, four visually oligoclonal profiles were said to be non-oligoclonal by the automatic inspection and three visually non-oligoclonal profiles were said to be oligoclonal by the automatic method. The semi-automatic method has acceptable performance for routine implementation. The study was available online on November 10, 2017, in the journal Practical Laboratory Medicine.

Related Links:
Faculty of Medicine et de Maieutique

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
TORCH Infections Test
TORCH Panel

Print article

Channels

Molecular Diagnostics

view channel
Image: Researcher Kanta Horie places a sample in a mass spectrometer that measures protein levels in blood plasma and other fluids (Photo courtesy of WashU Medicine)

Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression

Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.