Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genetic Mutation Identified for TB Vulnerability

By LabMedica International staff writers
Posted on 15 Jan 2019
About one in five people worldwide are infected with Mycobacterium tuberculosis, the bacterium that causes tuberculosis. Of those, only 10%, at most, will show symptoms, because most immune systems have tools to fight the microbe. When these tools are absent or dysfunctional, however, the infection can damage the lungs and other organs, and even cause death.

Genetic mutations have been uncovered that rob the immune system of its ability to combat more ubiquitous germs of the same bacterial family, mycobacteria. Molecular abnormalities have been elucidated that make people vulnerable to mycobacterial infections. This evidence points to strategies for treating or preventing some cases of tuberculosis (TB).

A large international team of scientists led by the Rockefeller University (New York, NY, USA) collected DNA samples from patients with active forms of the disease. By analyzing these samples, the team discovered that the risk of developing TB is heightened in people who have two copies of a particular variation to the gene coding for the enzyme tyrosine-protein kinase (TYK2).

The team reported that patients with autosomal recessive, complete interleukin (IL)-12Rβ2 or IL-23R deficiency, lacking responses to IL-12 or IL-23 only, all of whom, unexpectedly, display mycobacteriosis without candidiasis. They showed that αβ T, γδ T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-γ in response to IL-12, whereas NKT cells and MAIT cells preferentially produce IFN-γ in response to IL-23. They also showed that the development of IFN-γ–producing CD4+ T cells, including, in particular, mycobacterium-specific TH1* cells (CD45RA−CCR6+), is dependent on both IL-12 and IL-23. They showed that the genes IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population.

Jean-Laurent Casanova, MD, PhD, a professor and senior author of the study, said, “In Europeans, one in 600 people have two copies of this TYK2 variation. And in the rest of the population the rate is between one in 1,000 to one in 10,000, which is still not rare. Here at Rockefeller, there are probably around four to six people who have this genetic predisposition to TB. Yet, that is not to say that those people will actually develop the disease, and, in fact, they probably won't. In New York, someone can have this mutation and their risk of getting TB is effectively zero. But if that person goes to work in a TB hospital in Africa, then the likelihood of getting TB is high, one hundredfold higher than it would be for a person without the genetic variant.” The study was published on December 21, 2018, in the journal Science Immunology.

Related Links:
Rockefeller University


Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
cTnI/CK-MB/Myo Test
Finecare cTnI/CK-MB/Myo Rapid Quantitative Test
New
Coagulation Analyzer
CS-2400
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.