We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Shenzhen YHLO Biotech Co., Ltd.

Shenzhen YHLO Biotech Co., Ltd. (YHLO) is an immunoassay solutions company that specializes in developing, manufactur... read more Featured Products: More products

Download Mobile App




Serum-IgG Responses in Patients with Mild and Severe COVID-19

By LabMedica International staff writers
Posted on 04 Nov 2020
Print article
Image: The iFlash 1800 chemiluminescence immunoassay analyzer (Photo courtesy of Shenzhen YHLO Biotech).
Image: The iFlash 1800 chemiluminescence immunoassay analyzer (Photo courtesy of Shenzhen YHLO Biotech).
The coronavirus disease 2019 (COVID-19) pandemic continues, causing considerable morbidity and mortality worldwide. The severity of COVID-19 ranges from asymptomatic to fatal pneumonitis, with mildly symptomatic patients accounting for approximately 80% of all cases according to current understanding.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, gains entry to human cells by binding the angiotensin-converting enzyme 2 (ACE2) receptor with the receptor-binding domain (RBD) of its spike (S) protein. Antibodies targeting the S-protein may effectively neutralize the virus.

Microbiologists and Immunologists at the University of Gothenburg (Gothenburg, Sweden) recruited a cohort of 47 patients between February 25th and March 25th 2020. All patients had been diagnosed with SARS-CoV-2 with RT-PCR that was performed in a QuantStudio 6 instrument (Applied Biosystems, Foster City, CA, USA). Serum-IgG antibodies against SARS-CoV-2 were analyzed using two commercially available serological assays: the qualitative Architect chemiluminescent microparticle immunoassay (Abbott Laboratories, Abbott Park, IL, USA), measuring IgG against SARS-CoV-2 N-protein, and the quantitative iFlash 1800 chemiluminescent immunoassay (Shenzhen YHLO Biotech Co, LTD, Shenzhen, P.R.China), which measures IgG against both SARS-CoV-2 S- and N-proteins. Neutralizing antibodies (NAb) were determined after inactivation of the complement in serum.

The scientists reported that that all patients with severe symptoms and 29 (90.6%) patients with mild symptoms of COVID-19 developed SARS-CoV-2-specific IgG antibodies in serum. The time to seroconversion was observed to be significantly shorter in patients with severe symptoms compared to mild symptoms (median, 11 versus 22 days). Further, they found significantly higher concentrations of IgG antibodies in patients with severe symptoms (mean 107 AU/mL) than in patients with mild symptoms (mean 65 AU/mL) within 35 days post symptom onset.

Meanwhile, among patients with mild symptoms, three (9.4%) did not develop detectable IgG antibodies as determined using the commercially available assays during the follow-up period, 91–105 days post symptom onset. To further investigate the humoral immune response against SARS-CoV-2 in these three patients, the team analyzed neutralizing antibodies in serum samples collected 78–91 days post symptom onset. All three patients were found to have detectable virus-neutralizing antibodies, and in the two cases with the highest levels of neutralization, spike-protein receptor binding domain (RBD)-specific IgG was detected with an in-house assay.

The authors concluded that patients with severe COVID-19 both seroconvert earlier and develop higher concentrations of SARS-CoV-2-specific IgG than patients with mild symptoms. That not all COVID-19 patients develop detectable levels of IgG using two validated commercial methods, even over time, are vital for the interpretation of COVID-19 seroprevalence surveys and estimating the true prevalence in populations. The study was published on October 21, 2020 in the journal PLOS ONE.


Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Histamine ELISA
Histamine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.