We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Immune Regulators Predict Severity of Plasmodium vivax Malaria

By LabMedica International staff writers
Posted on 17 Oct 2022
Print article
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)

Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules is thought to contribute to pathogenesis and has been proposed as a possible predictor for disease complications.

Severe clinical manifestations described for P. vivax infections include neurological conditions, especially coma or successive seizures, and impaired consciousness; hematological conditions, in particular anemia, severe thrombocytopenia and hemoglobinuria; systemic symptoms, such as circulatory collapse, vital organ damage, including respiratory dysfunction and acute respiratory distress syndrome, acute kidney failure, splenic rupture, liver dysfunction, and jaundice.

Tropical Disease Specialists at the Universidad de Córdoba (Montería, Colombia) and their colleagues enrolled 156 participants in a study and classified them into three groups: 50 patients with severe malaria (SM), 56 non-severe malaria (NSM) and 50 healthy controls (HC), all from an endemic area. After confirming the diagnosis of P. vivax malaria by microscopy and molecular techniques; biochemical, hematological and parasitological parameters were determined.

Patients were classified as severe malaria if they met the criteria for any of the following complications: Hemoglobin concentration lower than 7 mg/dL was considered severe anemia, platelet concentration lower than 50.000 platelets/μL was considered severe thrombocytopenia, hypoglycemia (glucose < 60mg/dL), creatinine concentration higher than 1.3 mg/dL was considered indicative of renal dysfunction, Glutamic-pyruvic transaminase (GPT), Glutamic-oxaloacetic transaminase (GOT) concentration higher than 40 u/L was considered hepatic dysfunction.

IL-4, IL-2, CXCL10 (IP-10), IL-1β, TNF-α, CCL2 (MCP-1), IL-17A, IL-6, IL-10, IFN-γ, IL-12p70, CXCL8 (IL-8), and active TGF-β1 determination was performed in plasma, using the Human Essential Immune Response Panel kit (13-plex) (Biolegend, San Diego, CA, USA). Samples were run in duplicates in a FACSCalibur (Becton Dickinson, Franklin Lakes, NJ, USA).

The scientists reported that the levels of several cytokines and chemokines, CXCL10, IL-10, IL-6, IL-4, CCL2 and IFN-γ were found to be significantly higher in severe, compared to non-severe P. vivax malaria patients. Severe thrombocytopenia was positively correlated with IL-4, CXCL10, IL-6, IL-10 and IFN-γ levels; renal dysfunction was related to an increase in IL-2, IL-1β, IL-17A and IL-8, and hepatic impairment with CXCL10, MCP-1, IL-6 and IFN-γ. A Lasso regression model suggests that IL-4, IL-10, CCL2 and TGF-β might be developed as biomarkers for severity in P. vivax malaria.

The authors concluded that their study showed that there is a differential concentration of some cytokines and chemokines between patients with non-severe malaria and severe P. vivax malaria; and that there are associations between these molecules with manifestations that occur in severe malaria. Four molecules with potential to become biomarkers of severity were identified. The study was published on September 30, 2022 in the journal PLOS Neglected Tropical Diseases.

Related Links:
Universidad de Córdoba 
Biolegend 
Becton Dickinson 

New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG
New
Salmonella Infection Rapid Test
HumaTex Salmonella
New
Cytomegalovirus Assay
Alethia CMV

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Pathology

view channel
Image: Lunit SCOPE HER2 is an AI-powered solution designed to detect HER2 expression profile (Photo courtesy of Lunit)

AI-Powered Pathology Solutions Accurately Predict Outcomes for HER2-Targeted Therapy in Metastatic CRC

A new study has highlighted how artificial intelligence (AI)-powered analysis of HER2 and the tumor microenvironment (TME) can improve patient stratification and predict clinical outcomes more effectively.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.