We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

By LabMedica International staff writers
Posted on 12 Apr 2024
Print article
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means that a one-size-fits-all approach often falls short. Individual responses to the same drug can vary dramatically. Personalized cancer treatment, which outperforms traditional treatment methods, increasingly relies on genomics—DNA profiling of a patient's cancer—to tailor therapy. Current genomic profiling processes can analyze thousands of genes but might take weeks to deliver results and still fail to provide complete clarity on the optimal treatment strategy. For the first time, researchers have combined genetic testing with personalized drug screening directly on tumor samples to identify the right treatment for children with relapsed cancers, offering a timelier and effective approach.

The functional precision medicine approach to target cancer has been developed by researchers at Florida International University (Miami, FL, USA) combines genetic testing with a new method of testing individual drugs on tumor samples. The combined approach offers advantages over the current precision medicine processes by speeding up results and broadening treatment possibilities. This innovative method involves taking a blood or tumor sample, enriching and processing the cancer cells in the lab to mimic natural growth in the body, and then testing these cells against a library of over 120 FDA-approved drugs, which includes both oncological and non-oncological treatments. These drugs are tested individually and in combinations suggested by the clinical team to identify the most effective treatment options. The entire process is completed in about a week.

This new approach was successfully implemented to guide treatment for children with relapsed cancers, showing improvement in 83% of cases. Ongoing larger trials for both children and adults aim to validate and expand these findings. Furthermore, this research opens new avenues for addressing health disparities; it explores how minority populations uniquely respond to FDA-approved drugs and aims to identify biomarkers and more effective targeted therapies for these groups.

“The results are exciting because cancer that comes back is much harder to treat. Seeing improvement in 83 percent of patients is incredibly promising,” said Florida International University cancer researcher Diana Azzam who led the study. “This could be the way we turn cancer into a manageable disease.”

Related Links:
Florida International University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
RNA Isolation Kits
RNeasy Plus Kits for RNA Isolation
New
Gastrointestinal Infection Test
RIDA QUICK Cryptosporidium/Giardia/Entamoeba Combi Test

Print article

Channels

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more

Pathology

view channel
Image: Lunit SCOPE HER2 is an AI-powered solution designed to detect HER2 expression profile (Photo courtesy of Lunit)

AI-Powered Pathology Solutions Accurately Predict Outcomes for HER2-Targeted Therapy in Metastatic CRC

A new study has highlighted how artificial intelligence (AI)-powered analysis of HER2 and the tumor microenvironment (TME) can improve patient stratification and predict clinical outcomes more effectively.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.