We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

By LabMedica International staff writers
Posted on 22 Jul 2024
Print article
Image: The tool can improve precision oncology by accurately predicting molecular subtypes and therapy responses (Photo courtesy of Shutterstock)
Image: The tool can improve precision oncology by accurately predicting molecular subtypes and therapy responses (Photo courtesy of Shutterstock)

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. Traditionally, cancer subtyping has been conducted through histological staining (immunohistochemistry), which involves identifying specific markers that categorize tumors into distinct subtypes. Recently, high-throughput transcriptomic profiling has transformed the way breast cancer subtypes are identified by analyzing gene activity in cancer cells through the total messenger RNAs present, which correspond to gene sequences and are used by ribosomes to synthesize proteins.

Transcriptomic profiling utilizes RNA sequencing (RNAseq), a rapidly evolving molecular biology technique that sequences RNA strands efficiently. As RNA sequencing becomes more affordable, it holds the potential for routine clinical integration to aid in diagnosis and treatment decisions. However, its application is currently limited by the requirement for processing large sample batches simultaneously and difficulties in comparing samples across different platforms. Now, scientists have developed a computational tool that collates breast cancer transcriptomic data from various databases, enhancing precision oncology by accurately predicting molecular subtypes and therapeutic responses.

The computational tool named EMBER developed by scientists at EPFL (Lausanne, Switzerland) integrates over 11,000 breast cancer transcriptomes, allowing for the prediction of cancer subtypes on an individual sample basis and capturing essential biological pathways, thereby improving the prediction of therapy responses. EMBER uses a statistical model that merges RNA-seq and microarray data from major datasets like TCGA and METABRIC, focusing on early-stage breast cancer patients. The data is normalized to a common scale, selecting the 1000 most variable genes and using 44 stable genes for normalization to maintain important gene expression features.

EMBER was validated with independent patient cohorts and tested on clinical trial data, such as the POETIC trial, identifying potential therapy resistance mechanisms like increased androgen receptor signaling and decreased TGFβ signaling. It accurately identified the five molecular subtypes of breast cancer and crucial pathways, including estrogen receptor signaling and cell proliferation. A notable finding is that EMBER's estrogen receptor signaling score surpasses the immunohistochemistry-based ER index used in clinics, suggesting EMBER's higher accuracy in predicting responses to endocrine therapy. By offering a consolidated platform for breast cancer transcriptomic data, EMBER facilitates a deeper understanding of molecular subtypes and treatment responses, potentially leading to more tailored treatments and improved outcomes for patients with ER+ breast cancer. EMBER also presents a viable method for integrating RNA sequencing into standard diagnostic procedures, promoting more comprehensive and cost-effective cancer diagnostics. This method not only advances precision oncology but also establishes a solid framework for further research and clinical applications.

Related Links:
EPFL

New
Gold Member
ANCA IFA
Kallestad Autoimmune ANCA IFA Complete Kit
Unit-Dose Packaging solution
HLX
New
Lab Autoclave
T-Lab Eco
New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The Enlighten test detects early-stage cancers by focusing on the body\'s response to tumor development (Photo courtesy of Proteotype Diagnostics)

Multi-Cancer Early Detection Test Measures Host Response to Tumor Development

It is estimated that one in two individuals will receive a cancer diagnosis at some point in their lives. Approximately 70% of cancer fatalities occur from cancers that do not have available screening methods.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Immunology

view channel
Image: Bone marrow affected by multiple myeloma, a disease against which PVR inhibition can increase the efficacy of immunotherapy (Photo courtesy of Cancer Epigenetics Group, IJC)

Epigenetic Test Could Determine Efficacy of New Immunotherapy Treatments Against Multiple Myeloma

Multiple myeloma is a blood cancer that primarily affects individuals over the age of sixty, and its occurrence rises as the population ages. In this disease, the bone marrow—the spongy tissue inside bones... Read more

Microbiology

view channel
Image: New research promises a potential non-invasive stool test and novel therapy for endometriosis (Photo courtesy of Shutterstock)

Non-Invasive Stool Test to Diagnose Endometriosis and Help Reduce Disease Progression

Endometriosis, a painful condition impacting nearly 200 million women globally, occurs when tissue similar to the lining of the uterus grows outside its usual location, such as on the intestines or the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.