We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI-Powered Immuno-Oncology Tool Predicts Lung Cancer Treatment Outcomes

By LabMedica International staff writers
Posted on 02 Dec 2024
Print article
Image: HistoTME reads routinely stained histopathology images of tumor samples (Photo courtesy of Adobe Stock)
Image: HistoTME reads routinely stained histopathology images of tumor samples (Photo courtesy of Adobe Stock)

Immune checkpoint inhibitors (ICI) are used to treat non-small cell lung cancer (NSCLC) by enhancing the immune system's ability to fight cancer. However, identifying which patients will benefit most from this treatment remains a challenge. Now, advancements in artificial intelligence (AI) and diagnostic tools offer the potential to enhance treatment outcomes and survival rates for NSCLC patients by helping doctors more accurately predict their response to ICI therapy.

Researchers at SUNY Upstate Medical University (Syracuse, NY, USA) have developed HistoTME, an affordable and easy-to-implement AI tool. This advanced deep learning algorithm analyzes routinely stained histopathology images of tumor samples to predict molecular subtypes (based on bulk RNA sequencing), providing insights into the tumor microenvironment (TME). By examining these pathology images, HistoTME identifies specific cell types in the surrounding tumor tissue, offering valuable information about the patient's unique TME composition. This is crucial for predicting personalized ICI treatment responses, especially in patients with low PD-L1 expression, a key marker commonly used in companion diagnostics. The algorithm was validated on a multi-modal dataset comprising over 650 lung cancer patients and more than 1500 images.

The researchers hope this method will assist doctors in selecting personalized treatment plans with greater accuracy and cost-efficiency, especially for patients without access to expensive molecular testing. Moreover, this test could complement existing companion diagnostics, which often struggle to identify the appropriate patients for the right treatments. The next phase of the study will involve clinical validation of HistoTME, which will further evaluate its effectiveness in real-world clinical environments and may lead to its integration into routine cancer care.

“AI-driven diagnostics and prognostication have the potential to transform the future of healthcare practices and precision oncology,” said Upstate researcher Tamara Jamaspishvili, MD/PhD, who won the "Best Research Poster" Award for Faculty at the Digital Pathology Association's national conference, PathVisions 2024 for her work using AI and computational pathology to improve cancer diagnosis and treatment.

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Blood Culture Identification Panel
cobas ePlex BCID-GP Panel
New
Anti-Annexin V IgG/IgM Assay
Anti-Annexin V IgG/IgM ELISA

Print article

Channels

Molecular Diagnostics

view channel
Image: Umbilical cord blood biomarkers may improve preterm infant care (Photo courtesy of Shutterstock)

Umbilical Cord Blood Test Could Identify Preterm Infants at Risk for Medical Complications

Advancements in medical technology and neonatology have significantly improved the care of prematurely born infants. However, these infants still face heightened risks for medical complications, such as... Read more

Immunology

view channel

3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing... Read more

Microbiology

view channel
Image: The Cytovale System isolates, images, and analyzes cells (Photo courtesy of Cytovale)

Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application

Sepsis is the leading cause of death and the most expensive condition treated in U.S. hospitals. The risk of death from sepsis increases by up to 8% for each hour that treatment is delayed, making early... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.