We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI-Powered Immuno-Oncology Tool Predicts Lung Cancer Treatment Outcomes

By LabMedica International staff writers
Posted on 02 Dec 2024
Print article
Image: HistoTME reads routinely stained histopathology images of tumor samples (Photo courtesy of Adobe Stock)
Image: HistoTME reads routinely stained histopathology images of tumor samples (Photo courtesy of Adobe Stock)

Immune checkpoint inhibitors (ICI) are used to treat non-small cell lung cancer (NSCLC) by enhancing the immune system's ability to fight cancer. However, identifying which patients will benefit most from this treatment remains a challenge. Now, advancements in artificial intelligence (AI) and diagnostic tools offer the potential to enhance treatment outcomes and survival rates for NSCLC patients by helping doctors more accurately predict their response to ICI therapy.

Researchers at SUNY Upstate Medical University (Syracuse, NY, USA) have developed HistoTME, an affordable and easy-to-implement AI tool. This advanced deep learning algorithm analyzes routinely stained histopathology images of tumor samples to predict molecular subtypes (based on bulk RNA sequencing), providing insights into the tumor microenvironment (TME). By examining these pathology images, HistoTME identifies specific cell types in the surrounding tumor tissue, offering valuable information about the patient's unique TME composition. This is crucial for predicting personalized ICI treatment responses, especially in patients with low PD-L1 expression, a key marker commonly used in companion diagnostics. The algorithm was validated on a multi-modal dataset comprising over 650 lung cancer patients and more than 1500 images.

The researchers hope this method will assist doctors in selecting personalized treatment plans with greater accuracy and cost-efficiency, especially for patients without access to expensive molecular testing. Moreover, this test could complement existing companion diagnostics, which often struggle to identify the appropriate patients for the right treatments. The next phase of the study will involve clinical validation of HistoTME, which will further evaluate its effectiveness in real-world clinical environments and may lead to its integration into routine cancer care.

“AI-driven diagnostics and prognostication have the potential to transform the future of healthcare practices and precision oncology,” said Upstate researcher Tamara Jamaspishvili, MD/PhD, who won the "Best Research Poster" Award for Faculty at the Digital Pathology Association's national conference, PathVisions 2024 for her work using AI and computational pathology to improve cancer diagnosis and treatment.

New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Gold Member
Troponin T QC
Troponin T Quality Control
New
Biological Indicator Vials
BI-O.K.
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.