We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microbiome Alterations Influence Lung Disease Prognosis

By LabMedica International staff writers
Posted on 16 Oct 2018
Print article
Image: A histopathology of interstitial lung disease showing acute injury with necrosis. Necrosis (N) is a harbinger of infection in an acutely ill patient. Infection always leads the differential diagnosis in this situation, even if special stains are negative (Photo courtesy of Professor K.O. Leslie).
Image: A histopathology of interstitial lung disease showing acute injury with necrosis. Necrosis (N) is a harbinger of infection in an acutely ill patient. Infection always leads the differential diagnosis in this situation, even if special stains are negative (Photo courtesy of Professor K.O. Leslie).
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium, which is the tissue and space around the air sacs of the lungs.

ILD involves alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Alterations to the respiratory microbiome have been identified as a predisposing factor of interstitial lung diseases.

Physicians at the Beaumont Health System (Royal Oak, MI, USA) and their colleagues conducted a retrospective analysis of 472 patients with ILD who were admitted to a large tertiary care academic center from January 1, 2010, to December 31, 2016. Patient data were extracted from electronic records using billing codes for various ILD. The majority of the patients had either pulmonary fibrosis or sarcoidosis.

The team collected 170 respiratory cultures were collected from the study population. The majority of the respiratory isolates were gram-negative pathogens (39% Pseudomonas and 18% other gram-negative organisms); 27% were methicillin-resistant Staphylococcus aureus (MRSA). Patients infected with gram-negative organisms (other than Pseudomonas) and MRSA had the highest 30-day mortality (39% and 32% respectively) compared with lower mortality for those infected with Pseudomonas and other gram positive organisms (7% and 14% respectively).

Patients infected with gram-negative organisms other than Pseudomonas also had higher rates of vasopressin administration compared with those infected with other organisms. Rates of intensive care units (ICU) admission also differed according to organism that was cultured. These associations persisted even after adjustment for the other variables including type of ILD, age, gender, comorbid conditions and smoking history. There was no association between the use of immunosuppressant medications or antifibrotics and the development of resistant pathogens.

Hira Iftikhar, MD, MBBS, the lead author of the study, said, “The presence of gram-negative bacteria is a risk factor for adverse events. These bacteria could lead to a higher mortality rate, ICU admission and increased vasopressor use. A larger study should be conducted to establish the risk factors for the mortality in hospitalized ILD patients including results of respiratory cultures.” The study was presented at the annual meeting of Chest, held October 6-10, 2018, in San Antonio, TX, USA.

Related Links:
Beaumont Health System

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.