We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Multidrug-Resistant TB Outbreak Undetected by Standard Tests

By LabMedica International staff writers
Posted on 31 Oct 2018
Print article
Image: Deeplex-MycTB deep sequencing test analyses a wide panel of target genes in the bacteria and can identify resistance to over a dozen antibiotics simultaneously (Photo courtesy of Genoscreen).
Image: Deeplex-MycTB deep sequencing test analyses a wide panel of target genes in the bacteria and can identify resistance to over a dozen antibiotics simultaneously (Photo courtesy of Genoscreen).
Rapid diagnosis of Mycobacterium tuberculosis resistant to anti-tuberculosis drugs is essential to prevent further acquisition of drug resistance, high morbidity and mortality, and unabated transmission of resistant strains.

Fast detection of resistance to rifampicin, the most important anti-tuberculosis drug, is especially crucial because it is predictive of multidrug resistance, defined as resistance to at least isoniazid and rifampicin. Global rollout of rapid molecular assays is revolutionizing the diagnosis of rifampicin resistance, predictive of multidrug-resistance, in tuberculosis.

A large international team of scientists working with the Katholieke Universiteit Leuven (Leuven, Belgium) screened records of 37,644 Mycobacterium tuberculosis positive cultures from four South African provinces, to identify isolates with rifampicin sensitivity and isoniazid resistance according to Xpert MTB/RIF, GenoType MTBDRplus, and BACTEC MGIT 960.

Of 1,823 isolates that met these criteria, 277 were randomly selected and screened for Ile491Phe with multiplex allele-specific PCR and Sanger sequencing of rpoB. Ile491Phe-positive strains (as well as 17 Ile491Phe-bearing isolates from another study) were then tested by Deeplex-MycTB deep sequencing (Genoscreen, Lille, France; www.genoscreen.fr) and whole-genome sequencing to evaluate their patterns of extensive resistance, transmission, and evolution. The Genoscreen test analyses a wide panel of target genes in the bacteria and can identify resistance to over a dozen antibiotics simultaneously.

The team identified Ile491Phe in 37 (15%) of 249 samples with valid multiplex allele-specific PCR and sequencing results, thus reclassifying them as multi-drug resistant (MDR). All 37 isolates were additionally identified as genotypically resistant to all first-line drugs by Deeplex-MycTB. Six of the South African isolates harbored four distinct mutations potentially associated with decreased bedaquiline sensitivity. Consistent with Deeplex-MycTB genotypic profiles, whole-genome sequencing revealed concurrent silent spread in South Africa of a MDR tuberculosis strain lineage extending from the original outbreak and at least another independently emerged Ile491Phe-bearing lineage.

The authors concluded that a substantial number of MDR tuberculosis cases harboring the Ile491Phe mutation in the rpoB gene in South Africa are missed by current diagnostic strategies, resulting in ineffective first-line treatment, continued amplification of drug resistance, and concurrent silent spread in the community. The study was published on October 17, 2018, in the journal The Lancet Infectious Diseases.

Related Links:
Katholieke Universiteit Leuven

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Refrigerated Microtube Homogenizer
BeadBlaster 24R
New
FAP Immunoassay
Quantikine QuicKit Human FAP ELISA

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.