We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Buruli Ulcer Pathogen Detected by Isothermal RPA Assay

By LabMedica International staff writers
Posted on 28 Feb 2019
Print article
Image: The T8 Isothermal Diagnostics Instrument provides quantitative and qualitative results for molecular diagnostic isothermal assay applications (Photo courtesy of Axxin).
Image: The T8 Isothermal Diagnostics Instrument provides quantitative and qualitative results for molecular diagnostic isothermal assay applications (Photo courtesy of Axxin).
Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The pathogenesis of BU is linked to the production of a polyketide toxin known as mycolactone, which is cytotoxic and has immunomodulatory properties and presents as nodules, plaques, ulcers and edema.

Nucleic acid amplification of insertion sequence IS2404 by polymerase chain reaction (PCR) is the most sensitive and specific method to detect M. ulcerans, the causative agent of BU. However, PCR is not always available in endemic communities in Africa due to its cost and technological sophistication. Microscopy for acid fast bacilli and culture for M. ulcerans have low sensitivity and histopathology is rarely available in endemic areas.

A team of scientists associated with the Kwame Nkrumah University of Science and Technology (Kumasi, Ghana) evaluated the clinical performance of the M. ulcerans (Mu-RPA) assay was evaluated using DNA extracted from fine needle aspirates or swabs taken from 67 patients in whom BU was suspected and 12 patients with clinically confirmed non-BU lesions. The team developed an isothermal DNA amplification system using the recombinase polymerase amplification (RPA) method.

All samples were tested with both the real-time PCR and the Mu-RPA assay to determine the clinical sensitivity and specificity of the assay using real-time PCR as the reference test. In the case of real-time RPA detection, TwistAmp Exo “Improved Formulation” kit was used. Fluorescence detection at 570 nm for FAM channel was measured and a threshold set by increasing the fluorescence above the three standard deviations over the background detected in the first minute of incubation. The team programmed the T8- fluorometer using the T8-ISO Desktop application to detect the lowest dilutions that met criteria for distinguishing positive samples from negative controls based on serial dilutions of the molecular standard.

The scientists tested all samples by both RPA and real-time PCR and 58 of these samples were confirmed by PCR as BU. Of the 58 confirmed cases, 51 were correctly identified by the RPA assay with seven false negative results giving a sensitivity of 88%. The 21 PCR negative samples were all negative by RPA, specificity of 100% and a 100% positive predictive value (PPV) with a Youden’s index of 88%. When the analysis was stratified by type of sample, the sensitivity and specificity of the RPA for swabs in comparison to PCR were 92% and 100% respectively with a 100% PPV. Similarly, the sensitivity and specificity of FNA samples were 82% and 100% respectively.

The authors concluded that the developed real-time RPA assay for the rapid and accurate detection of M. ulcerans DNA with high sensitivity, specificity and reproducibility was comparable to real-time PCR. It was significantly faster than available real-time PCR methods for detecting M. ulcerans with a run time of 15 minutes, compared to almost two hours for real-time PCR. Potentially the Mu-RPA can be used in a low resource setting closer to the patients when combined with a fast DNA extraction method. The study was published on February 1, 2019, in the journal PLOS NTD.

Related Links:
Kwame Nkrumah University of Science and Technology

Gold Member
Troponin T QC
Troponin T Quality Control
New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
New
Ross River Virus Test
Ross River Virus Real Time PCR Kit
New
Toxoplasma Rapid Test
Toxo IgG/IgM Rapid Test Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.