We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Nasal Microbiome Influences Pneumonia and Related Diseases

By LabMedica International staff writers
Posted on 15 Jul 2019
Print article
Image: Digitally colorized photomicrograph of fluorescent antibody labeled Streptococcus pneumoniae bacteria in spinal fluid sample (Photo courtesy of the CDC).
Image: Digitally colorized photomicrograph of fluorescent antibody labeled Streptococcus pneumoniae bacteria in spinal fluid sample (Photo courtesy of the CDC).
A recent study examined the influence of the natural microbial flora in the nose and viral co-infection on the acquisition of Streptococcus pneumoniae bacteria and the development of pneumococcal diseases.

S. pneumoniae is the main bacterial pathogen involved in pneumonia. It has been speculated that acquisition of the bacteria and colonization density was probably affected by viral co-infections, the local microbiome composition, and mucosal immunity. To examine the relationship between the nasal microbiome and acquisition of S. pneumoniae bacteria, investigators at Liverpool School of Tropical Medicine (United Kingdom) and the University of Edinburgh (United Kingdom) used an experimental human challenge model (the Experimental Human Pneumococcal Challenge) and inoculated live bacteria in combination with a live virus in the form of the readily available nasal vaccine for influenza.

Working with this model, the investigators examined the interactions between live-attenuated influenza vaccine (LAIV), successive pneumococcal challenge, and the healthy adult nasal microbiota and mucosal immunity.

Results indicated that the equilibrium between the nasal microbiome and the host immune system had an impact on pneumococcal acquisition and density, in particular when combined with a viral co-infection. The microbial flora in the nose also appeared to have an effect on replication of the pathogenic virus itself.

Contributing author Dr. Daniela Ferreira, professor of respiratory vaccines and infection immunology at Liverpool School of Tropical Medicine, said, "We knew relatively little about the relationship between viral infections and the microbiota. Our model helped us to establish a link between baseline microbiota and colonization with the bacteria which causes pneumonia and shows the way that it is apparently altered with the introduction of a viral pathogen."

Senior author Dr. Debby Bogaert, professor of inflammation research at the University of Edinburgh, said, "Using this sophisticated human challenge model, we were for the first time able to identify that different constellations of microbes in the nose are associated with more or less inflammation, viral replication, and pneumococcal carriage receptiveness."

The work was published in the July 5, 2019, online edition of the journal Nature Communications.

Related Links:
Liverpool School of Tropical Medicine
University of Edinburgh

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.