Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Circadian Rhythm Genes Are Biomarkers for Predicting Risk of Preterm Birth

By LabMedica International staff writers
Posted on 17 Aug 2021
The CLOCK and CRY2 genes have been identified as useful biomarkers for predicting the likelihood that a pregnant woman will experience a preterm birth.
Previous studies have observed an association between maternal circadian rhythm disruption and preterm birth. However, the underlying molecular mechanisms and the potential of circadian clock genes to serve as predictors of preterm birth remain unexplored.

Investigators at Michigan State University (East Lansing, USA) examined the association of 10 core circadian transcripts in maternal blood with spontaneous preterm births versus full term births using a nested case-control study design. For this study, maternal blood was sampled in trimesters two-three from women with spontaneous preterm births (n = 51) and full term births (n = 106), matched for five demographic variables.

Results revealed that in second trimester maternal blood, only CLOCK and CRY2 transcripts were significantly lower in spontaneous preterm births versus full term. In addition, the investigators identified 98 common pathways that were negatively or positively correlated with CLOCK and CRY2 expression.

CLOCK is a gene encoding a basic helix-loop-helix-PAS transcription factor that is believed to affect both the persistence and period of circadian rhythms. The CLOCK gene plays a major role as an activator of downstream elements in the pathway critical to the generation of circadian rhythms. In mammals, the proteins coded by the CRY1 and CRY2 genes act as light-independent inhibitors of CLOCK-BMAL1 components of the circadian clock.

“We were excited to discover lower mRNA levels in the CRY2 and CLOCK genes,” said senior author Dr. Hanne Hoffmann, assistant professor of animal science at Michigan State University. “Preterm births are common. If we know the mother is at risk for a preterm birth, her doctor can monitor her more closely. If we could measure women’s mRNA levels and tell them for their second or third pregnancies that they are not at risk for a preterm birth because their levels are higher (in a normal/healthy range), that would be such a comfort to the mothers who previously had a preterm birth. If I can help one baby make it to full term who was not supposed to, that would make my day.”

The preterm birth study was published in the June 18, 2021, online edition of the Journal Biology of Reproduction.

Related Links:

Michigan State University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.